Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-22T07:15:34.715Z Has data issue: false hasContentIssue false

Photoconduction in Thin-Film Transistors Fabricated from Lasercrystallized Silicon on Fused Quartz

Published online by Cambridge University Press:  28 February 2011

A. Chiang
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
M. H. Zarzycki
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

Photoconduction with optical gain in excess of 3000 is achieved in depletion-mode MOSFETs fabricated from laser-crystallized silicon thin-films on fused quartz. Devices operated with a reverse gate bias show responsivity of ≥ 300 Amp/Watt for radiation in the visible spectrum and dynamic range of > 106. This process occurs by spatial separation of photogenerated electron-hole pairs across a p-n junction in the device body, collection of holes in the floating substrate, and conduction of electrons in a buried channel in the bulk of the nearly defect-free silicon film. This study explores the influence of channel dopant profile on the photoconduction process and the latitude for optimized photodetector performance. The effect of post-crystallization residual structural defects on performance uniformity is also evaluated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Weimer, P. K., Sadasiv, G., Meyer, J. E. Jr, Meray-Horvath, L., and Pike, W. S., “A self-scanned solid-state image sensor,” Proc. IEEE, vol. 55, pp. 15911602, 1967.Google Scholar
[2] Kaneko, S., Sakamoto, M., Okumura, F., Itano, T., Kataniwa, H, Kajiwara, Y., Kanamori, M., Yasumoto, M., Saito, T. and Okubo, T., “Amorphous Si:H contact linear image sensor with Si3N4 blocking layer,” Technical Digest, 1982 IEDM, pp. 420424.Google Scholar
[3] Hamano, T., Ito, H., Nakamura, T., Ozawa, T., Fuse, M. and Takenouchi, M., “An amorphous Si high speed linear image sensor,” Proc. 13th Conference on Solid State Devices, Tokyo, 1981; Japan. J. AppL Phys. vol. 21, Supplement 21-1, pp. 245-249, 1981.Google Scholar
[4] Morozumi, S., Kurihara, H., Takeshita, T., Oka, H., and Hasegawa, K., “Completely integrated contact-type linear image Sensor,” IEEE Trans. Electron Devices, Special Issue for Solid State Image Sensors, vol. ED–32, pp. 15461550, 1985.Google Scholar
[5] Ito, H., Nishihara, Y., Nobue, M., Fuse, M., Nakamura, T., Ozawa, T., Tomiyama, S., Weisfield, R., Tuan, H., and Thompson, M., “a-Si:H TFT array driven linear image sensor with capacitance coupling isolation structure,” presented at IEDM, paper 16.3, Washington D. C., December 2-4, 1985.Google Scholar
[6] Johnson, N. M. and Chiang, A., “Highly photosensitive transistors in single-crystal silicon thin films on fused silica,” Appl. Phys. Lett., vol. 45, pp. 11021104, 1984.Google Scholar
[7] Chiang, A., Johnson, N. M., N. M. “High-gain photodetectors in thin-film transistors fabricated from laser-crystallized silicon on fused silica,” Reference 4, pp. 1559–, 1985.Google Scholar
[8] Reedy, R. E. and Lee, S. H., “Silicon photodetector integrated on a lithium tantalate substrate,” Appl. Phys. Lett., vol. 44, pp. 1921, 1984.Google Scholar
[9] Bosch, M. A., Herbs, D., and Tewksbury, S. K., “The influence of light on the properties of NMOS transistors in laser m-zone crystallized silicon layers,” Electron Device Left., vol. EDL–5, pp. 204206, 1984.Google Scholar
[10] Chiang, A., Zarzycki, M. H., Meuli, W. P., and Johnson, N. M., “NMOS logic circuits in laser-crystallized silicon on quartz,” Energy Beam-Solid Interactions and Transient Thermal Processing, Fan, JohnC. C. and Johnson, N. M., eds., New York: Elsevier, 1984, pp. 551558.Google Scholar
[11] Johnson, N. M., Biegelsen, D. K., Tuan, H. C., Moyer, M. D., and Fennell, L. E., “Single-crystal silicon transistors in laser-crystallized thin films on bulk glass,” IEEE Electron Device Lett., vol. EDL–3, pp. 369372, 1982.Google Scholar
[12] Chiang, A., Meuli, W. P., Johnson, N. M., and Zarzycki, M. H., “High-performance thin-film transistors in CO2 laser crystallized silicon on quartz,” Proc. SPIE Symposium on Laser Processing of Semiconductor Devices, Vol. 385, pp. 7678, 1983.Google Scholar
[13] Fennell, L. E., Moyer, M. D., Biegelsen, D. K., Chiang, A., and Johnson, N. M., “Defect reduction by tilted zone crystallization of patterned silicon films on fused silica,” Energy Beam-Solid Interactions and Transient Thermal Processing, Fan, John C. C. and Johnson, N. M., eds., New York: Elsevier, 1984, pp. 403408.Google Scholar
[14] Tsaur, B.-Y., Gels, M. W., Fan, J. C. C., Silversmith, D. J., and Mountain, R. W., “Silicon-on-insulator MOSFETs fabricated in zone-melting-recrystallized poly-Si films on SiO2,” Laser and Electron-Beam Interactions with Solids, Appleton, B. R. and Celler, G. K., eds., New York: Elsevier, 1982, p. 585.Google Scholar
[15] Johnson, N. M. and Moyer, M. D., “Eletronic deep levels in laser-crystallized silicon thin-film MOS capacitors on fused silica,” Comparison of Thin Film Transistor and SOl Technologies, Lam, H. W. and Thompson, M. J., eds., New York: Elsevier, 1984, pp.101108.Google Scholar
[16] Sze, S. M., Physics of Semiconductor Devices, second edition, New York: Wiley 1981.Google Scholar