Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T12:19:41.681Z Has data issue: false hasContentIssue false

Photoinduced Solid Phase Transformation in Vanadium Dioxide Films

Published online by Cambridge University Press:  26 February 2011

Sergiy Lysenko
Affiliation:
SLysenko@feynman.uprm.edu, University of Puerto Rico, Department of Physics, University of Puerto Rico, Mayaguez, Puerto Rico, 00681-9016, United States Minor Outlying Islands
Valentin Vikhnin
Affiliation:
vikhnin@uni-osnabrueck.de, University of Puerto Rico, Department of Physics, Puerto Rico
Armando Rua
Affiliation:
f_fernandez@feynman.uprm.edu, University of Puerto Rico, Department of Physics, Puerto Rico
Felix Fernandez
Affiliation:
f_fernandez@feynman.uprm.edu, University of Puerto Rico, Department of Physics, Puerto Rico
Huimin Liu
Affiliation:
hliu@uprm.edu, University of Puerto Rico, Department of Physics, Puerto Rico
Get access

Abstract

Laser induced insulator-to-metal phase transition in VO2 thin films was explored using femtosecond optical pump-probe spectroscopy. The transient reflection and relaxation processes in VO2 were observed during phase transition on 10-11 - 10-9 temporal-scale. Optical generation of carriers in VO2 initiates extremely fast changes in reflectivity which is strongly dependent on pump fluence. Analysis of transient optical properties allows suggesting the excitonic-controlled mechanism responsible for the light-induced phase transition in VO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, S., Ma, H., Yi, X., Wang, H., Tao, X., Chen, M., Li, X., Ke, C., Infrared Physics & Technology 45, 239 (2004).Google Scholar
2 Balberb, I., Trokman, S., J. Appl. Phys. 4, 2111 (1975).Google Scholar
3 Fan, J.C.C., Fetterman, H.R., Bachner, F.J., Zavrasky, P.M., C.D.Parker, Appl. Phys. Lett. 30, 11 (1977).Google Scholar
4 Gal'perin, V. L., Khakhaev, I. A., Chudnovski, F. A., Shadrin, E. B., Zh.Tech.Phys. 43, 235 (1998).Google Scholar
5 Cavalleri, A., Dekorsy, Th., Chong, H. H. W., Kieffer, J. C., Schoenlein, R. W., Phys. Rev. B, 70, 161102 (2004).Google Scholar
6 Klimov, V.A., Timofeeva, I.O., Khanin, S.D., Shardin, E.B., Ilinskii, A.V., Silva-Andrade, F., Tech.Phys. 47, 1134 (2002).Google Scholar
7 Vikhnin, V.S., Lysenko, S., Rua, A., Fernandez, F., Liu, H.: J. of Physics (c) 21, 44 (2005); Solid State Comm.2005 (in press).Google Scholar
8 Paquet, D., Leroux-Hugon, P., Phys. Rev. B, 22, 5284 (1980).Google Scholar
9 Pollack, S. A., Chang, D. B., Chudnovky, F. A., Khakhaev, I. A., J. Appl. Phys. 78, 3592 (1995).Google Scholar
10 Poumellec, B., Marucco, J. F., Touzelin, B., Phys. Rev. B, 35, 2284 (1987).Google Scholar