Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T12:41:11.833Z Has data issue: false hasContentIssue false

Photoluminescence and Time-Resolved Photoluminescence Studies of Self-Assembled InAs Quantum Dots

Published online by Cambridge University Press:  01 February 2011

X. H. Zhang
Affiliation:
Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602
J. R. Dong
Affiliation:
Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602
S. J. Chua
Affiliation:
Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602
Get access

Abstract

Photoluminescence (PL) spectra and time resolved PL from self-assembled InAs/GaAs quantum dots (QDs) grown by metal organic chemical vapor deposition are studied. A reduction in the emission linewidth with increasing temperature was observed at low temperature range and an increase in the linewidth at higher temperature. It was also observed that the variation of PL peak energy with temperature does not follow Varshni's equation. These anomalous behaviors of PL can be explained in term of thermal redistribution of carriers. It was also found that the PL decay time increases with photon wavelength, which is due to the carrier transfer between laterally coupled QDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McEuen, P. L., Science 278, 1729 (1997), and other quantum dot articles in the same issue.Google Scholar
2. Semiconductor Quantum Dots, edited by Zunger, A., special issue of MRS Bull 23, No. 2 (1998).Google Scholar
3. Spencer, B. J. and Tersoff, J., Phys. Rev. Lett. 79, 4858 (1997)Google Scholar
4. Marzin, J. Y., Gerard, J. M., Izrael, A., Barrier, D. and Bastard, G., Phys. Rev. Lett. 73, 716 (1994)Google Scholar
5. Gerard, J. M., Genin, J. B., Lefebvre, J., Moison, J. M., Lebouche, N. and Barthe, F., J. Cryst. Growth 150, 351 (1995)Google Scholar
6. Lubyshev, D. I., Gonzalez-Borrero, P. P., Marega, E., Petiprez, E., LaScala, N., and Basmaji, P., Appl. Phys. Lett. 68, 205 (1996)Google Scholar
7. Mukai, K., Ohtsuka, N., Shoji, H., and Sugawara, M., Appl. Phys. Lett. 68, 3013 (1996)Google Scholar
8. Chu, L., Arzberger, M., Böhm, G., and Abstreiter, G., J. Appl. Phys. 85, 2335 (1999)Google Scholar
9. Alessi, M. Grassi, Capizzi, M., Bhatti, A. S., Frova, A., Martelli, F., Frigeri, P., Bosacchi, A., and Franchi, S., Phys. Rev. B 59, 7620 (1999)Google Scholar
10. Bhatti, A. S., Alessi, M. Grassi, Capizzi, M., Frigeri, P., and Franchi, S., Phys. Rev. B. 60, 2592 (1999)Google Scholar
11. Tarasov, G. G., Mazur, Yu. I., Zhuchenko, Z. Ya., Maaβdorf, A., Nickel, D., Tomm, J. W., Kissel, H., Walther, C., and Masselink, W. T., J. Appl. Phys. 88, 7162 (2000)Google Scholar
12. Lobo, C., Leon, R., Marcinkevicius, S., Yang, W. and Sercel, P. C., Liao, X. Z., Zou, J., and Cockayne, D. J. H., Phys. Rev. B 60, 16647 (1999)Google Scholar
13. Dai, Y. T., Fan, J. C., Chen, Y. F., Lin, R. M., Lee, S. C., and Lin, H. H., J. Appl. Phys. 82, 4489 (1997)Google Scholar
14. Polimeni, A., Patane, A., Henini, M., Eaves, L., and Main, P. C., Phys. Rev. B 59, 5064 (1999)Google Scholar
15. Varshni, Y. P., Physica 34, 149 (1967)Google Scholar
16. Skolnick, M. S., Tapster, P. R., Bass, S. J., Pitt, A. T., and Apsley, N., Semicond. Sci. Technol. 1, 29 (1986)Google Scholar
17. Eliseev, P. G., Perlin, P., Lee, J., and Osinski, M., Appl. Phys. Lett. 71, 569 (1997)Google Scholar