Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-11T12:35:12.178Z Has data issue: false hasContentIssue false

Photoluminescence, Capacitance-Voltage, and Variable Field Hall Effect Measurements of Mg-Doped InN

Published online by Cambridge University Press:  01 February 2011

Craig Hartley Swartz
Affiliation:
craig.swartz@canterbury.ac.nz, University of Canterbury, Electrical and Computer Engineering, Private Bag 4800, Christchurch, 8140, New Zealand
Steven M. Durbin
Affiliation:
steven.durbin@canterbury.ac.nz, The MacDiarmid Institute for Advanced Materials and Nanotechnology, Christchurch, 8140, New Zealand
Roger J. Reeves
Affiliation:
Roger.Reeves@canterbury.ac.nz, The MacDiarmid Institute for Advanced Materials and Nanotechnology, Christchurch, 8140, New Zealand
Katherine Prince
Affiliation:
katherine.prince@ansto.gov.au, Australian Nuclear Science and Technology Organization, Lucas Heights, N/A, Australia
John V. Kennedy
Affiliation:
J.Kennedy@GNS.org, GNS Science, Lower Hutt, 5040, New Zealand
Sandeep Chandril
Affiliation:
schandril@wvu.edu, West Virginia University, Physics, Morgantown, WV, 26506, United States
Thomas H. Myers
Affiliation:
thomas.myers@mail.wvu.edu, West Virginia University, Physics, Morgantown, WV, 26506, United States
Damian Carder
Affiliation:
damian.carder@canterbury.ac.nz, The MacDiarmid Institute for Advanced Materials and Nanotechnology, Christchurch, 8140, New Zealand
Get access

Abstract

Variable magnetic field Hall effect, photoluminescence (PL) and capacitance-voltage (CV) analysis have been used to study InN layers grown by plasma assisted molecular beam epitaxy. All three techniques reveal evidence of a buried p-type layer beneath a surface electron accumulation layer in heavily Mg-doped samples. The use of lattice-matched Yttria-stablized Zirconia substrates also provides evidence of a p-type layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, H., Schaff, W.J., Eastman, L.F., and Stutz, C.E., Appl. Phys. Lett. 82, 1736 (2003).Google Scholar
2. Mahboob, I., Veal, T.D., McConville, C.F., Lu, H., and Schaff, W.J., Phys. Rev. Lett. 92 (2004).Google Scholar
3. Jones, R.E., Yu, K.M., Li, S.X., Walukiewicz, W., Ager, J.W., Haller, E.E., Lu, H., and Schaff, W.J., Phys. Rev. Lett. 96, 125505 (2006).Google Scholar
4. Cimalla, V., Niebelschütz, M., Ecke, G., Lebedev, V., Ambacher, O., Himmerlich, M., Krischok, S., Schaefer, J. A., Lu, H., and Schaff, W. J., Phys. Stat. Sol. A 203, 59 (2006).Google Scholar
5. Anderson, P.A., Kendrick, C.E., Kinsey, R.J., Asadov, A., Gao, W., Reeves, R.J., and Durbin, S.M., Physica Status Solidi (C) 2 2320 (2005).Google Scholar
6. Meyer, J.R., Hoffman, C. A, Bartoli, F. J. Arnold, D.A., Sivananthan, S. and Faurie, J. P., Semicond. Sci. Technol. 8, 805 (1993).Google Scholar
7. Swartz, C.H., Tomkins, R.P., Giles, N.C., Myers, T.H., Lu, Hai, and Schaff, W.J., Phys. Stat. Sol. C 2, 2250 (2005).Google Scholar
8. Rezaei, B., Asgari, A., and Kalafi, M., Physica B 371, 107 (2006).Google Scholar
9. Anderson, P.A., Swartz, C.H., Chandril, S., Myers, T.H. and Durbin, S.M., Appl. Phys. Lett. 89, 184104 (2006).Google Scholar
10. Rangel-Kuoppa, V.-T., Suihkonen, S., Sopanen, M., and Lipsanen, H., Jpn. J. Appl. Phys. 45, 36 (2006).Google Scholar