Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T13:11:44.048Z Has data issue: false hasContentIssue false

Photoluminescence Characterization of Inp-Based Hemt Structures

Published online by Cambridge University Press:  22 February 2011

Henry T. Hendriks
Affiliation:
Raytheon Research Division, 131 Spring Street, Lexington, MA 02173
Steven K. Brierley
Affiliation:
Raytheon Research Division, 131 Spring Street, Lexington, MA 02173
William E. Hoke
Affiliation:
Raytheon Research Division, 131 Spring Street, Lexington, MA 02173
Noren Pan
Affiliation:
Raytheon Research Division, 131 Spring Street, Lexington, MA 02173
Get access

Abstract

InP-based lattice matched high electron mobility transistor (HEMT) structures have been characterized by liquid nitrogen temperature photoluminescence. A phenomenological line shape model has been utilized to fit photoluminescence spectra in order to obtain key parameters, such as the subband energies and transition amplitudes. From transition amplitude ratios and subband energies, fundamental quantum well characteristics are inferred. Changes in these parameters are linked to variations in the growth conditions of the epitaxial layer structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakata, Y., Sasa, S., Sugiyama, Y., Fujii, T., and Hiyamizu, S., Jap. J. Appl. Phys. 26, L59 (1987).Google Scholar
2. Kao, Y. C., Seabaugh, A. C., Liu, H. Y., Kim, T. S., Reed, M. A., Saunier, P., Bayraktaroglu, B., and Duncan, W. M. in InP and Related Mat. for Adv. Elec. and Opt. Devices, edited by Singh, R. and Messick, L.J. (SPIE Vol. 1144, 1989), pp. 3038.Google Scholar
3. Tischler, M. A., Parker, B. D., Mooney, P. M., and Goorksy, M. S., J. Elec. Mat. 20, 1053 (1991).Google Scholar
4. Estera, J. P., Duncan, W. M., Kao, Y. C., and Liu, H. Y., in Proc. of the Fourth International Conf. on InP and Related Mat. (IEEE, Newport, RI 1992), pp. 2831.Google Scholar
5. Tischler, M. A., Parker, B. D., DeGelormo, J., Jackson, T. N., Cardone, F., and Goorsky, M. S., in Proc. of the Third International Conf. on InP and Related Mat. (IEEE, Cardiff, Wales 1991), pp. 602605.Google Scholar
6. Pan, N., Elliot, J., Carter, J., Hendriks, H., and Aucoin, L. in Proc. International Symp. on GaAs and Related Compounds (Inst. Phys. Conf. Series, 1993, to be published).Google Scholar
7. Brierley, S. K., J. Appl. Phys. 74, 2760 (1993).Google Scholar
8. Cingolani, R., Stolz, W., and Ploog, K., Phys. Rev. B 40, 2950 (1989).Google Scholar
9. Nash, K. J., Skolnick, M. S., and Bass, S. J., Semicond. Sci. Technol. 2, 329 (1987).Google Scholar
10. Rorison, J. M., J. Phys. C 20, L311 (1986).Google Scholar
11. Alavi, K., Aggarwal, R. L., and Groves, S. H., Phys. Rev. B 21, 1311 (1980).Google Scholar
12. Nicholas, R. J., Sessions, S. J., and Portal, J. C., Appl. Phys. Lett. 37, 178 (1980).Google Scholar
13. Kopf, R. F., Wei, H. P., Perley, A. P., and Livescu, G., Appl. Phys. Lett. 60, 2386 (1992).Google Scholar