Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T06:10:59.840Z Has data issue: false hasContentIssue false

Photoluminescence Detection of Native Defects in The Surface Region of Bulk CdTe

Published online by Cambridge University Press:  21 February 2011

P.M. Amirtharaj
Affiliation:
U.S. Army Center for Night Vision and Electro-Optics Fort Belvoir, VA-22060
N.K. Dhar
Affiliation:
U.S. Army Center for Night Vision and Electro-Optics Fort Belvoir, VA-22060
Get access

Abstract

The native defects introduced by Br2/CH3 OH etching and aging under atmospheric conditions have been investigated in In doped, bulk CdTe using photoluminescence (PL) spectroscopy. The results indicate a large enhancement of the Cd vacancy related 1.5896 eV excitonic feature with chemical treatment and aging. Hence, the primary perturbation is interpreted to be a small loss of Cd within the sampling region. This result is compared and contrasted with previous studies of etching induced modifications. The implications of Cd depletion on interpreting PL spectra, device processing and long term stability are considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Molva, E., Pautrat, J.L., Saminadayar, K., Milchberg, G. and Magnea, N., Phys. Rev. B 30, 3344 (1984).Google Scholar
2. Pautrat, J.L., Francou, J.M., Magnea, N., Molva, E. and Saminadayar, K., J. Crystal Growth 72, 194 (1985).Google Scholar
3. Bryant, F.J. and Totterdell, D.H.J., Radiation Effects 9, 115 (1971).Google Scholar
4. Seto, S., Tanaka, A., Masa, Y., Dairaku, S. and Kawashima, M., Appl. Phys. Lett. 53, 1524 (1928).Google Scholar
5. Barnes, C.E. and Zanio, K., J. Appl. Phys. 46, 3659 (1975).Google Scholar
6. Triboulet, R. and Marfaing, Y., J. Electrochem. Soc. 120, 1260 (1973)Google Scholar
7. Feng, Z.C., Burke, M.G. and Choyke, W.J., Appl. Phys. Lett. 53, 128 (1988).Google Scholar
8. James, K.M., Flood, J.D., Merz, J.L., and Jones, C.E., J. Appl. Phys. 59, 3596 (1986).Google Scholar
9. Laurenti, J.P., Bastide, G., Rouzeyre, M. and Triboulet, R., Solid State Commun. 67, 1127 (1988).Google Scholar
10. Cooper, D.E., Bajaj, J. and Newman, P.R., J. Crystal Growth 86, 544 (1988).Google Scholar
11. Giles, N.C., Bicknell, R.N. and Schetzina, J.F., J. Vac. Sci. Technol. A 5, 3064 (1987).Google Scholar
12. Feng, Z.C., Mascarenhas, A. and Choyke, W.J., J. Luminescence 35, 329 (1986).Google Scholar
13. Figueroa, J.M., Sanchez-Sinencio, F., Mendoza-Alvarez, J.G., Zelaya, O., Vazquez-Lopez, C. and Helman, J.S., J. Appl. Phys. 60, 452 (1986).Google Scholar
14. Amirtharaj, P.M. and Pollak, F.H., Appl. Phys. Lett. 45, 789 (1984).Google Scholar
15. Aspnes, D.E. and Arwin, H., J. Vac. Sci. and Technol A 2, 1309 (1984).Google Scholar
16. Haring, J.P., Werthen, J.G. and Bube, R.H., J. Vac. Sci. Technol. A 1, 1469 (1983).Google Scholar
17. Wang, F., Schwartzman, A., Fahrenbruch, A.L., Sinclair, R., Bube, R.H. and Stahle, C.M., J. Appl. Phys. 62, 1469 (1987).Google Scholar