Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T15:07:06.595Z Has data issue: false hasContentIssue false

Photoluminescence Study of p-ZnGeP2 Crystals

Published online by Cambridge University Press:  10 February 2011

Yurri V. Rud
Affiliation:
Ioffe Physico-Technical Institute, 26 Polytekhnicheskaya st., St. Petersburg 194021, Russia
Vasilii Yu
Affiliation:
State Technical University, 29 Polytekhnicheskaya sL, St. Petersburg 195251, Russia, rudvas@uniys.hop.stu.neva.ru
M. C. Ohmer
Affiliation:
Wright Laboratory, Wright-Patterson AFB, Ohio 45433
P. G. Shunemann
Affiliation:
Lockheed Sanders, Nashua, New Hampshire 03061
Get access

Abstract

Photoluminescence (PL) steady-state spectra of p-ZnGeP2 (ZGP) single crystals grown by high- and low-temperature directed crystallization have been investigated. It is determined that the long-wavelength component PL with a maximum in the interval 1.2–1.5 eV for different crystals quenched in the temperature range 77–300 K. The long-wavelength component PL are due to donor-acceptor pair transitions. At room temperature the short-wavelength PL with a maximum near 1.85 eV becomes the determining component. The nature of this band discussed. The use of low-temperature directed crystallization reduces the concentration of lattice defects in ZGP single crystals and opens up the new possibilities for increasing the conversion efficiencies of nonlinear devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shay, J.L. and Wernick, J.H.. Ternary Chalcopvrite Semiconductors: Growth. Electronic Properties, and Applications. Pergamon, New York, 1976, 168 p.Google Scholar
2. Rud', Yu.V., Fiz. Tech. Poluprovodn., 28, 1105 (1984) [Semiconductors, 28, 633 (1994)].Google Scholar
3. Budni, P.A., Ezzo, K., Schunemann, P.G., Minnigh, S., McCarthy, J.C., and Poliak, T.M. in OSA Proceedings on Advances Solid State Lasers, edited by Dube, G. and Chase, L.L. (Optical Society of America, Washington, DC, 1991) 10, p. 335341.Google Scholar
4. Schunemann, P.G., Budni, P.A., Knights, M.G., Poliak, T.M., Chicklis, E.P., and Marquardt, C.L. in Advanced Solid State Lasers and Compact Blue-Green Laser Technical Digest (Optical Society of America, Washington, DC, 1993) 2, p. 131135.Google Scholar
5. McCrae, J.E. Jr, Gregg, M.R., Hengehold, R.L., Yeo, Y.K., Ostdiek, P.H., Ohmer, M.C., Shunemann, P.G., and Poliak, T.M., Appl. Phys. Lett., 64, 3142 (1994).Google Scholar
6. Dietz, N., Tsveybak, I., Ruderman, W., Wood, G., and Bachmann, K.J., Appl. Phys. Lett., 64, 2759 (1994).Google Scholar
7. Averkieva, G.K., Grigoreva, V.S., Maltseva, I.A., Prochukhan, V.D., and Rud', Yu.V., Phys. Status Solidi (a), 39, 453 (1977).Google Scholar
8. Rud', Yu.V., and Maltseva, I.A., Fiz. Tekh. Poluprovodn., 19, 870 (1977) [Sov. Phys. Solid State, 19,505(1977)].Google Scholar
9. Babonas, G., Geinrich, A., Cords, V., Moneke, J., and Shileika, A., Litov. Fiz. Sb., 20, 619 (1990).Google Scholar
10. Giles, N.C., Halliburton, L.E., Schunemann, P.G., and Poliak, T.M., Appl. Phys. Lett. 66, 1758, (1995).Google Scholar
11. Grigoreva, V.S., Lebedev, A.A., Ovezov, K., Prochukhan, V.D., Rud', Yu.V., and Yakovenko, A.A., Fiz. Tekh. Poluprovodn., 9, 1605 (1975) [Sov. Phys. Semicond., 9, 1058 (1975)].Google Scholar
12 Maltseva, I.A., Rud', Yu.V., and Undalov, Yu.K., Fiz. Tekh. Poluprovodn‥ 10, 400 (1976) [Sov. Phys. Semicond., 10, 240 (1976)].Google Scholar