Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-05T00:33:40.530Z Has data issue: false hasContentIssue false

Physical Properties of Lithium-Cobalt Oxides Grown by Laser Ablation

Published online by Cambridge University Press:  10 February 2011

L. Escobar-Alarcon
Affiliation:
Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801, México
E. Haro-Poniatowski
Affiliation:
Universidad Autónoma Metropolitana Iztapalapa, Apdo. Postal 55-534, México DF 09340, Mexico
J. Jimenez-Jarquin
Affiliation:
Universidad Autónoma Metropolitana Iztapalapa, Apdo. Postal 55-534, México DF 09340, Mexico
M. Massot
Affiliation:
LMDH, UMR 7603, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France
C. Julien
Affiliation:
LMDH, UMR 7603, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France
Get access

Abstract

We have studied the growth and the physical properties of LiCoO2 films as a function of formation conditions, i.e., substrate temperature and partial oxygen pressure. These films were grown on various substrates by the laser ablation technique using a Nd:YAG laser at 100 MW/cm2 power density. LiCoO2 films were characterized by XRD, SEM, and vibrational spectroscopy. The synthesized compounds show high homogeneity in composition and in particle dimension. The main advantage of this method is the less time needed for the reaction to occur completely. Raman scattering spectroscopy provides information on the local environment of cations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mitzushima, K., Jones, P.C., Wiseman, P.J. and Goodenough, J.B., Mat. Res. Bull. 15, 783 (1980).Google Scholar
2. Ohzuku, T. and Ueda, A., J. Electrochem. Soc. 141, 2972 (1994).Google Scholar
3. Wei, G., Hass, T.E. and Goldner, R.B., Solid State lonics. 58, 115 (1992).Google Scholar
4. Shokoohi, F.K., Tarascon, J.M., Wilkens, B.J., Guyomard, D. and Chang, C.C., J. Electrochem. Soc. 139, 1845 (1992).Google Scholar
5. Hwang, K.-H., Lee, S.-E. and Joo, S.-K., J. Electrochem. Soc. 141, 3296 (1994).Google Scholar
6. Chen, C., E. Kelder, M., Put, P.J.J.M. van der and Schoonman, J., J. Mater. Chem. 6, 765 (1996).Google Scholar
7. Striebel, K.A., Deng, C.Z., Wen, S.J. and Cairns, E.J., J. Electrochem. Soc. 143, 1821 (1996).Google Scholar
8. Guasti, M. Fernández, Poniatowski, E. Haro, Diamant, R., Ponce, L., Jimenez, E., J. Mater. Sci. 30, 6253 (1995).Google Scholar
9. Julien, C., Massot, M., Perez-Vicente, C., Haro-Poniatowski, E., Nazri, G.A. and Rougier, A., Mat. Res. Soc. Symp. Proc. 496, 415 (1998).Google Scholar
10. Perkins, J.D., Fu, M.L., Trickett, D.M., McGraw, J.M., Ciszek, T.F., Parilla, P.A., Roger, C.T. and Ginley, D.S., Mat. Res Soc. Symp. Proc. 496, 329 (1998).Google Scholar