Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T14:43:43.826Z Has data issue: false hasContentIssue false

Physical Properties of Nanocrystalline MoS2 and WS2 Particles Produced by CO2 Laser Pyrolysis

Published online by Cambridge University Press:  22 February 2011

Xiang-Xin Bi
Affiliation:
Center for Applied Energy ResearchUniversity of Kentucky, Lexington, KY40511-8433, USA
Ying Wang
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, KY40511-8433, USA
W. T. Lee
Affiliation:
Center for Applied Energy ResearchUniversity of Kentucky, Lexington, KY40511-8433, USA
Kai-An Wang
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, KY40511-8433, USA
S. Bandow
Affiliation:
Instrument Center, Institute for Molecular Science, Myodaiji, Okazaki, 444, Japan
P. C. Eklund
Affiliation:
Center for Applied Energy ResearchUniversity of Kentucky, Lexington, KY40511-8433, USA Department of Physics and Astronomy, University of Kentucky, Lexington, KY40511-8433, USA
Get access

Abstract

Nanocrystalline powders of 2H-MoS2 and 2H-WS2 with average particle size 5 and 9 nm, respectively, have been produced using C02laser pyrolysis. Typical production rate for these nanoparticles is 2g/hr. Particle size, crystallite size, and the structural phase were determined using X-ray diffraction(XRD), transmission electron microscopy(TEM), and Raman scattering. Particle size effects may have been observed in the Raman-active modes (WS2 and MoS2) and in the band-edge excitons (MoS2).

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haggerty, J. S., “Sinterable Powders from Laser-Driven Reactions”, in Laser-induced Chemical Processes, Steinfeld, J.I., Editor, 1981, Plenum Press: New York.Google Scholar
2. Buerki, P. R., Troxler, T., and Leutwyler, S., “Synthesis of Ultrafire Si3N4 Particles by CO2-laserInduced Gas Phase Reactions”, in High Temperature Science, Vol. 27. 1990, Humana Press Inc. 323.Google Scholar
3. Curcio, F., Ghiglione, G., Musci, M., and Nannetti, C., Appl. Surf. Sci., 36: p.52, 1989.Google Scholar
4. Rice, G. W. and Woodin, R. L., J. Am. Ceram. Soc., 71: p. C181, 1988.Google Scholar
5. Curcio, F., Musci, M., and Notaro, N., Applied Surface Science, 46: p. 225, 1990.Google Scholar
6. Fiato, R. A., Rice, G. W., Miseo, S., and Soled, S. L., US Patent, 4,637,753, 1987.Google Scholar
7. Rice, G. W., Fiato, R. A., and Soled, S. L., US Patent, 4,659,681, 1987.Google Scholar
8. Bi, X.-Xin, Ganguly, B., Huffman, G. P., Huggins, F. E., Endo, M. and Eklund, P. C., Journal of Materials Research, Vol. 8(7), 1666(1993).Google Scholar
9. Stencel, J. M., Eklund, P. C., Bi, X.-X., and Derbyshire, F. J., Catalysis Today, 15: p. 285, 1992.Google Scholar
10. Hilton, M. R. and Fleischauer, P. D., J. Mater. Res., 5(2): p. 406, 1990.Google Scholar
11. Weiser, O. and Sanda, S., Sulfiue Catalysts, Their Propertiesand Applications, 1973, NewYork: Pergamon.Google Scholar
12. Jacobson, A. J., Chianelli, R. R., Rich, S. M., and Whittingham, M. S., Mater. Res. Bull.,14:p.1437, 1979.Google Scholar
13. Jacobson, A. J., Chianelli, R. R., and Whittinghamn, M. S., J. Electrochem. Soc., 126:p.2277, 1979.Google Scholar
14. Stoemenos, J., “Li Intercalated MoS2, Investigation by transmission electron microscopy”, in Microionics-SolidState Integrable Batteries, Balkanski, M., Editor, 1991, Elsevier Science Publishers B. V.: Brussels and Luxembourg. p. 363.Google Scholar
15. Roxlo, C. B., Chianelli, R. R., Deckman, H. W., Ruppert, A. F., and Wong, P. P., J. Vac.Sci. Technol., A5(4): p. 555, 1987.Google Scholar
16. Beal, A. R., Knights, J. C., and Liang, W. Y., J. Phys. C:Solid State Phys., 5: p. 3540, 1972.Google Scholar
17. Khan, M. R. and Goldsmith, G. J., IL NUOVO CIMENTO, 2D(3): p. 665, 1983.Google Scholar
18. Hermann, A. M., Somoano, R. B., Hadek, V., and Rembaum, A., Solid State Comm., 13:p. 1065, 1973.Google Scholar
19. Woollam, J. A. and Somoano, R. B., Phys. Rev. B, 13: p. 3843, 1976.Google Scholar
20. Somoano, R. B. and Rembaum, A., Phys. Rev. Lett., 27: p. 402, 1971.Google Scholar
21. Somoano, R. B., Hadek, V., and Rembaum, A., J. Chem. Phys., 58: p. 697, 1973.Google Scholar
22. Siegel, R. W., Processing of Metals and Alloys, Materials Science and Technology - A comprehensive Treatment (VCH Verlagsgesellschaft, Weinheim)1991.Google Scholar
23. Persans, P. D., Lu, E., Haus, J., Wagoner, G., and Ruppert, A. F., Mat. Res. Soc. Symp. Proc., 195: p. 591, 1990.Google Scholar
24. Lu, E., Persans, P. D., Ruppert, A. F., and Chianelli, R. R., Mat. Res. Soc. Symp. Proc., 164:p. 153, 1990.Google Scholar
25. Bi, X.-X., Wang, K., Lee, W. T., Bandow, S., and Eklund, P. C., to be published.Google Scholar
26. Eklund, P. C., Bi, Xiang-Xin, and Derbyshire, F.J., Preprints of Fuel Division, American Chemical Society, Vol. 37(4), 1781(1992).Google Scholar
27. Patty, R. R., Russwurm, G. M., McClenny, W. A., and Morgan, D. R., Applied Optics, 13(12): p. 2850, 1974.Google Scholar
28. Cullity, B. D., Elements of X-Ray Diffraction. 1967, Addison-Wesley Publishing Company, Inc. Google Scholar
29. X-ray Powder Diffraction Data File, JCPDS, 1991.Google Scholar
30. Chen, J. M. and Wang, C. S., Solid State Comm., 14: p. 857860, 1974.Google Scholar
31. Wieting, T. J. and Verble, J. L., Phys. Rev. B, 3: p. 4286, 1971.Google Scholar
32. Verble, J. L., Wieting, T. J., and Reed, P. R., Solid State Comm., 11: p. 941, 1972.Google Scholar
33. Sugai, S. and Ueda, T., Phys. Rev. B, 26(12): p. 6554, 1982.Google Scholar
34. Stacy, A. M. and Hodul, D. T., Phys. Chem. Solids, 46(4): p. 405409, 1985.Google Scholar
35. Neville, R. A. and Evans, B. L., Phys. Stat. Sol. (b), 73: p. 597, 1976.Google Scholar