Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T10:51:00.871Z Has data issue: false hasContentIssue false

A Physically Based Quantum Correction Model for DG MOSFETs

Published online by Cambridge University Press:  01 February 2011

Markus Karner
Affiliation:
karner@iue.tuwien.ac.at, TU - Wien, Institute for Microelectronics, Gusshausstr. 27-29 / E360, Vienna, N/A, N/A, Austria, +43 1 58801 360 16, +43 1 58801 360 99
Martin Wagner
Affiliation:
mwagner@iue.tuwien.ac.at, TU - Wien, Institute for Microelectronics, Gußhausstraße 27-29 / E360, Wien, N/A, N/A, Austria
Tibor Grasser
Affiliation:
grasser@iue.tuwien.ac.at, TU - Wien, Institute for Microelectronics, Gußhausstraße 27-29 / E360, Wien, N/A, N/A, Austria
Hans Kosina
Affiliation:
kosina@iue.tuwien.ac.at, TU - Wien, Institute for Microelectronics, Gußhausstraße 27-29 / E360, Wien, N/A, N/A, Austria
Get access

Abstract

In this work we present a physically based quantum correction model for highly scaled double gate (DG) CMOS devices. In contrast to previous work, our quantum correction model is based on the bound states that form in the Si film. The Eigenenergies and expansion coefficients of the wave functions are tabulated for arbitrary parabolic approximations of the potential in the structure. This enables a highly efficient use for TCAD applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hänsch, W. et al., SSE, vol.32, pp. 839849, (1991)Google Scholar
2 Dort, M. Van et al., SSE, vol. 37, no. 3, pp. 411414 (1994)Google Scholar
3 Jungemann, C. et al., Proc. MSM, pp. 458461 (2001)Google Scholar
4 Nguyen, C. et al., Proc. NSTI-Nanotech, vol. 3, pp. 3336 (2005)Google Scholar
5 Wagner, M. et al., Proc. IWPSD, vol. 1, 458461 (2005)Google Scholar
6 Yang, N.. Et al, IEEE Transaction on Electron Devices, vol. 46, pp. 14641471 (1999)Google Scholar
7 Stern, F., Phys.Rev.B, vol. 5, pp. 48914899 (1972)Google Scholar
8 IuE, Minimos-NT 2.1 User's Guide, TU Wien, http://www.iue.tuwien.ac./software/minimos-nt (2004 Google Scholar