Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T09:34:03.743Z Has data issue: false hasContentIssue false

The Physics of Photons and Neutrons with Applications of Deuterium Labeling Methods to Polymers

Published online by Cambridge University Press:  26 February 2011

G. D. Wignall*
Affiliation:
National Center for Small-Angle Scattering Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Extract

Over the past decade small-angle neutron scattering (SANS), has found numerous applications in the fields of biology, polymer science, physical chemistry, materials science, metallurgy, colloids., and solid state physics. A number of excellent references are available [1–4] which contain basic neutron scattering theory though these text books reflect the origins of the technique and the examples are largely drawn from physics e.g., single crystals, simple liquids, monatomic gases, liquid metals, magnetic materials, etc. In view of the large numbers of nonspecialists who are increasingly using neutron scattering, the need has become apparent for presentations which can provide rapid access to the method without unnecessary detail and mathematical rigor. In the field of polymer science several reviews have been written to meet this need [5–8] including a recent comprehensive survey of neutron scattering studies of polymers [9] to Which reference will be made for detailed derivations of the expressions used below. This article, along with others in this volume, is meant to serve as a general introduction to the symposium “Scattering Deformation and Fracture in Polymers,” and is intended to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to apply the technique to provide new information in areas of their own particular interests. In view of space limitations, the general theory will be given in the case for neutron scattering and analogies and differences with photon scattering (x-rays) will be pointed out at the appropriate point.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Turchin, I. V. E., Slow Neutrons, Israel Program for Scientific Translations, Jerusalem, 1965.Google Scholar
2. Boutin, H. and Yip, S., Molecular Spectroscopy with Neutrons, MIT Press, Cambridge, Mass, 1968.Google Scholar
3. Bacon, G. E., Neutron Diffraction, Clarendon Press, Oxford, England, 1971.Google Scholar
4. Marshall, W. and Lovesey, S. W., Theory of Thermal Neutron Scattering, Clarendon Press, Oxford, England, 1971.Google Scholar
5. Maconnachie, A. and Richards, R. W., Polymer 19, 739 (1978).Google Scholar
6. Higgins, J. S. in Kostorz, G., ed., Treatise on Materials Science and Technology, Academic Press, New York, 15, 381 (1979).Google Scholar
7. Sperling, L. H., Polymer Engineering and Sci. 24, 1 (1984).Google Scholar
8. Higgins, J. S. and Stein, R. S., J. Appl. Cryst. 11, 346 (1978).Google Scholar
9. Wignall, G. D., “Neutron Scattering from Polymers,” in Encyclopedia of Polymer Science and Engineering, 2nd Edition, ed. by Grayson, Martin and Kroschwitz, Jacqueline I., John Wiley and Sons, New York, 1986 (in press).Google Scholar
10. Wignall, G. D. and Bates, F. S., J. Appl. Cryst. (in press).Google Scholar
11. Schiff, L. I., Quantum Mechanics, McGraw-Hill, New York, 1955.Google Scholar
12. Windsor, C. G., in Willis, B.T. M., ed., Chemical Applications of Thermal Neutron Scattering, Oxford University Press, London, England, 1973.Google Scholar
13. Lomer, W. M. and Low, G. G., in Egelstaff, P. A., ed., Thermal Neutron Scattering, Academic Press, New York, 1965, Chapter 1.Google Scholar
14. Janik, J. A. and Kowalska, A., in Egelstaff, P. A., ed., Thermal Neutron Scattering, Academic Press, New York, 1965, Chapter 10.Google Scholar
15. Neutron Cross Sections. Garber, D. I. and Kinser, R. R., eds., Brookhaven National Laboratory, BNL325, 3rd Ed., Upton, New York, 1976; BNL 325, 2nd Edition Supplement No. 2, 1964.Google Scholar
16. Maconnachie, A., Polymer 25, 1068 (1984).Google Scholar
17. Schoenborn, B. P., Wise, D. S., and Schneider, D. K., Trans. Amer. Cryst. Assoc. 19, 67 (1983).Google Scholar
18. Mildner, D.F.R., Berliner, R., Pringle, O. A., and King, J. S., J. Appl. Cryst. 14, 370 (1981).Google Scholar
19. Glinka, C. in Faber, J., ed., Amer. Inst. of Phys. Conf. Proc. no. 89, 395 (1982).Google Scholar
20. Koehler, W. C., Hendricks, R. W., Child, H. R., King, S. P., Lin, J. S., and Wignall, G. D., in Chen, S. H., Chu, B., and Nossal, R., eds., Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems, Plenum Press, New York, NATO Advanced Study Series 83, 35 (1981).Google Scholar
21. Koehler, W. C., Physica 137B, 320 (1986).Google Scholar
22. Hayter, J. B. in Degiorgio, V. and Corti, M., eds., Proceedings of Enrico Fermic School of Physics Course XC, Amsterdam (1985), p. 59.Google Scholar
23. Wignall, G. D., Hendricks, R. W., Koehler, W. C., Lin, J. S., Wai, M. P., Thomas, E.L.T., and Stein, R. S., Polymer 22, 886 (1981).Google Scholar
24. This result was developed by Stein, R. S. (1980) following an earlier suggestion by Benoit, H. (1980) and was published in reference 23. Similar derivations were given independently in references 29–31.Google Scholar
25. Stein, R. S., see article in this volume.Google Scholar
26. Von Laue, M., Ann. Phys. 56, 497 (1918).Google Scholar
27. Hayashi, H., Hamada, F., and Nakajima, A., Macromolecules 9, 543 (1976).Google Scholar
28. Guinier, A. and Fournet, G., Small-Angle Scattering of X-Rays, John Wiley, New York, (1955).Google Scholar
29. Fischer, E. W., Stamm, M., Dettenmaier, M., and Herschenroeder, P., Polymer Preprints 20(1), 219 (1979).Google Scholar
30. Williams, C. E. et al. , J. Polym. Sci., Polym. Lett. Ed. 17, 379 (1979).CrossRefGoogle Scholar
31. Akcasu, A. Z., Summerfield, G. C., Jahshan, S. N., Han, C. C., Kim, C. Y., and Yu, H., J. Polym. Sci. 18, 865 (1980).Google Scholar
32. (a) Tangari, , Summerfield, G. C., King, J. S., Berliner, R., and Mildner, D.F.R., Macromolecules 13, 1546 (1980); (b) C.Tangari, J. S. King, and G. C.Summerfield, Macromolecules 15, 132 (1982).Google Scholar
33. Gawrisch, W., Brereton, M. G., and Fisher, E. W., Polymer Bull. 4, 687 (1981).Google Scholar
34. Boué, F., Nierlich, M., and Leibler, L., Polymer 23, 29 (1982).CrossRefGoogle Scholar
35. Flory, P. J., J. Chem. Phys. 17, 303 (1949); P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, (1953), p. 426.CrossRefGoogle Scholar
36. Flory, P. J., Statistical Mechanics of Chain Molecules, John Wiley-Interscience, New York and London (1968), p. 34.Google Scholar
37. Pechhold, W. R., Kolloid Z 228, 1 (1968).Google Scholar
38. (a) Yeh, G.S.Y., Rev. Macromol. Sci. 1, 173 (1972); (b) G.S.Y. Yeh and P. H. Geil, J. Macromol. Sci. (Phys.) B1(2), 235 (1967).Google Scholar
39. Kampf, A., Hoffman, M., and Kramer, H., Ber. Bunsenges 74, 851 (1970).Google Scholar
40. Kirste, R. G., Jahresbericht 1969 des Sonderforschungsbereiches, Mainz 41, 547 (1970).Google Scholar
41. Wignall, G. D., Imperial Chemical Industries (Runcorn), Memo PPR G19 (1970).Google Scholar
42. Cotton, J. P., Farnoux, B., Jannink, G., Mons, J., and Picot, C., C. R. Acad. Scd. (Paris) 275, 3C, 175 (1972).Google Scholar
43. (a) Kirste, R. G., Kruse, W. A., and Schelten, J., J. Makromol. Chem. 162, 299 (1972); (b) Koll. Z. Z Polym. 251, 919 (1973).Google Scholar
44. Kirste, R. G., Kruse, W. A., and Ibel, K., Polymer 16, 120 (1975).Google Scholar
45. Ballard, D.G.H., Wignall, G. D. and Schelten, J., Eur. Polym. J. 9, 965 (1973).Google Scholar
46. Benoit, H., Cotton, J. P., Decker, D., Farnoux, B., Higgins, J. S., Jannink, G., Ober, R., and Picot, C., Nature 245, 23 (1973).Google Scholar
47. Wignall, G. D., Ballard, D.G.H., and Schelten, J., Eur. Polym. J. 10, 861 (1974).Google Scholar
48. Lieser, G., Fischer, E. W. and Ibel, K., J. Polym. Sci. 13, 29 (1975).Google Scholar
49. Schelten, J., Ballard, D.G.H., Wignall, G. D., Longman, G., and Schmatz, W., Polymer 27, 751 (1976).Google Scholar
50. Herschenroeder, P., Thesis, Mainz (1978).Google Scholar
51. Hayashi, H., Flory, P. J., and Wignall, G. D., Macromolecules 16, 1328 (1983).Google Scholar
52. McAlea, K. P., Schultz, J. M., Gardner, K. H., and Wignall, G. D., Macomolecules 18, 477 (1985).Google Scholar
53. O'Reilly, J. M., Teegarden, D. M., and Wignall, G. D., Macromolecules 18, 2747 (1985).Google Scholar
54. Fernandez, A. M., Sperling, L. H., and Wignall, G. D., Macromolecules 19, 2572 (1986).CrossRefGoogle Scholar
55. Yoon, D. and Flory, P. J., Macromolecules 9, 294 (1976).Google Scholar
56. Debye, P., J. Appl. Phys. 15, 338 (1944).Google Scholar
57. Flory, P. J., Principles of Polymer Chemistry, Cornell University Press p. 295, 1969.Google Scholar
58. Kratky, O., Koll. Z. 182, 7 (1962).Google Scholar
59. (a) Yoon, D. Y. and Flory, P. J., Polym. Bull. 4, 692 (1981); (b). P. J. Flory, Pure and Applied Chem. 56, 305 (1984).Google Scholar
60. Flory, P. J., J. Am. Chem. Soc. 84, 2857 (1962).Google Scholar
61. Fischer, E. W. and Lorenz, R., Kolloid Z. 189, 97 (1963).Google Scholar
62. Keller, A., Philos. Mag. 2, 1171 (1957); Makromol. Chem. 34, 1 (1959).Google Scholar
63. Hoffman, J. D. and Laurizen, J. L., J. Res. Natl. Bur. Stand. Sect. A, 65A, 297 (1961).Google Scholar
64. Ballard, D.G.H., Cheshire, P., Longman, G. W., and Schelten, J., Polymer 19, 379 (1978).Google Scholar
65. Guenet, J. M., Polymer 22, 313 (1981).Google Scholar
66. Sadler, D. M. and Keller, A., Science 19, 265 (1979).Google Scholar
67. Sadler, D. M. and Keller, A., Macromolecules 10, 1128 (1977).Google Scholar
68. Summerfield, G. C., King, J. S., and Ullman, R., J. Appl. Cryst. 11, 548 (1978).Google Scholar
69. Stamm, M., Fischer, E. W., Dettenmaier, M., and Convert, P., Discuss. Faraday Soc. 68, 263 (1979).Google Scholar
70. Stamm, M., Schelten, J., Ballard, D.G.H., Colloid and Polym. Sci. 259, 286 (1981).Google Scholar
71. Yoon, D. Y. and Flory, P. J., Discuss. Faraday Soc. 68, 288 (1980).Google Scholar
72. Hoffman, J. D., Guttman, C. M., and Dimarzio, E. A., Discuss. Faraday Soc. 68, 177 (1979).Google Scholar
73. Guttman, C. M., Hoffman, J. D. and Dimarzio, E. A., Discuss. Faraday Soc. 68, 197 (1979); Polymer 22, 597 (1981).Google Scholar
74. Flory, P. J. and Yoon, D. Y., Nature 272, 226 (1977).Google Scholar
75. Sadler, D. M., and Harris, R., J. Polym. Sci., Polym. Phys. Ed. 20, 561 (1982).Google Scholar
76. Sadler, D. in Hall, I., ed., The Structure of Crystalline Polymers, Applied Science Publisher, (1983), p. 125.Google Scholar
77. Stamm, M., J. Polym. Sci., Polym. Phys. Ed., 20, 235 (1982).Google Scholar
78. Wignall, G. D., Mandelkern, L., Edwards, C., and Glotin, M., J. Polym. Sci., Polym. Phys. Ed. 20, 245 (1982).Google Scholar
79. Fischer, E. W., Hahn, K., Kugler, J., and Bom, R., J. Polym. Sci., Polym. Phys. Ed. 22, 1491 (1984).Google Scholar
80. Fischer, E. W., Polym. J. 17, 307 (1985).Google Scholar
81. Spells, S. J. and Sadler, D. M., Polymer 25, 739 (1984).Google Scholar
82. Buckingham, A. B. and Hentschel, H.G.E., J. Poly. Sci., Polym. Phys. Ed. 18, 853 (1980).Google Scholar
83. deGennes, P. G., Scaling Concepts in Polymer Physics, Cornell University Press, New York, 1979, Chapter IV.Google Scholar
84. Bates, F. S., Wignall, G. D., and Koehler, W. C., Phys. Rev. Lett. 55, 2425 (1985).Google Scholar
85. Bates, F. S. and Wignall, G. D., Macromolecules 19, 932 (1986).Google Scholar
86. Lapp, A., Picot, C., and Benoit, , Macromolecules 18, 2437 (1985).Google Scholar
87. Bates, F. S. and Wignall, G. D., Phys. Rev. Lett. 57, 1429 (1986).Google Scholar
88. Green, P. and Doyle, B. L., Phys. Rev. Lett. 57, 1407 (1986).Google Scholar
89. Schaefer, D. W., see article in this volume.Google Scholar
90. Roe, R. J., see article in this volume.Google Scholar