Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-16T05:24:53.616Z Has data issue: false hasContentIssue false

Physics of the Meyer-Neldel Rule in Amorphous Silicon

Published online by Cambridge University Press:  16 February 2011

Howard M. Branz
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
Arthur Yelon
Affiliation:
École Polytechnique, Montréal, Québec, Canada
Bijan Movaghar
Affiliation:
Ruhr Universität, Bochum, Germany
Get access

Abstract

We show that the meyer-Neldel Rule (or compensation law) arises from the entropy effect of accumulating several excitations in order to surmount an activation barrier. This explanation applies both to annealing and to conductivity phenomena in a-Si:H. We consider three consequences of this theory for a-Si:H : 1) MN processes in a-Si:H involve coupling to a bath of “optical” phonons; 2) dc conductivity involves strongly electron-phonon coupled states rather than extended electrons and a fixed density of states; and 3) time-of-flight exponents depend upon the MN temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyer, W. and Neldel, H., Z. Tech. Phys. 12, 588 (1937).Google Scholar
2. Yelon, A., Movaghar, B., and Branz, H.M., Phys. Rev. B 46, 12244 (1992).Google Scholar
3. See, for example, references cited in ref. 2 (2–14).Google Scholar
4. Crandall, R.S., Phys. Rev. B 43, 4057 (1991).Google Scholar
5. Jackson, W.B., Phys. Rev. B 38, 3595 (1988).CrossRefGoogle Scholar
6. Overhof, H. and Thomas, P., Electronic Transport in Hydrogenated Amorphous Semiconductors (Springer-Verlag, New York, 1989).Google Scholar
7. See for example, ref. 27 cited in ref. 2.Google Scholar
8. Tanielian, M.H., Phil. Mag. B 45, 435 (1982).CrossRefGoogle Scholar
9. Antoniadis, H. and Schiff, E.A., Phys. Rev. B 46, 9482 (1992).CrossRefGoogle Scholar
10. Peacock-Lopez, E. and Suhl, H., Phys. Rev. B 26, 3774 (1982).Google Scholar
11. Yelon, A. and Movaghar, B., Phys. Rev. Lett. 65, 618 (1990).Google Scholar
12. Glasstone, S., Laidler, K.J., and Eyring, H., The Theory of Rate Processes (McGraw-Hill, New York, 1941).Google Scholar
13. See references cited in ref. 2 (7,29,31–33).Google Scholar
14. Shapiro, F.R. and Turtle, J.R., Solid State Commun. 87, 199 (1993).Google Scholar
15. Movaghar, B., J. Phys. (Paris) Colloq. 42, C473 (1981).CrossRefGoogle Scholar
16. Thomas, P. and Flachet, J.C., J. Phys. (Paris) Colloq. 42 C4151 (1981).CrossRefGoogle Scholar
17. Fritzsche, H., J. Phys. Chem. Solids 6, 69 (1958).CrossRefGoogle Scholar
18. For a recent example, and references, see Popescu, C. and Stoica, T., Phys. Rev. B 46, 15 063 (1992).Google Scholar
19. Movaghar, B. and Yelon, A., to be published.Google Scholar
20. Long, A.R., Mostefa, M. and Lemon, R., J. Non-cryst. Solids 137&138, 419 (1991).Google Scholar
21. Scher, H., Shlesinger, M.F., and Bendler, J.T., Physics Today 44, #1, 26 (1991).Google Scholar
22. Tiedje, T. and Rose, A., Solid State Communications 37, 49 (1980).Google Scholar
23. Orenstein, J. and Kastner, M., Phys. Rev. Lett. 46, 1421 (1981).Google Scholar
24. Tiedje, T., in Semiconductors and Semimetals, Vol. 21C, edited by Pankove, J. I. (Academic, Orlando, 1984), p. 207.Google Scholar
25. Marshall, J.M., Street, R.A., and Thompson, M.J., Phil. Mag. B 54, 51 (1986).Google Scholar
26. Marshall, J.M., Street, R.A., Thompson, M.J., and Jackson, W.B., Phil. Mag. B 57, 387 (1988).Google Scholar
27. Winer, K., Hirabayashi, I., and Ley, L., Phys. Rev. Lett. 60, 2697 (1988).Google Scholar
28. Arkhipov, V.I., Iovu, M.S., Rudenko, A.I., and Shutov, S.D., Phys. Stat. Sol. (a) 54, 67 (1979).Google Scholar