Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-20T22:27:15.392Z Has data issue: false hasContentIssue false

Plasma Stimulated Growth of InP from TEL and PH3

Published online by Cambridge University Press:  28 February 2011

H. Reinecke
Affiliation:
Institute of Semiconductor Electronics and II. Physikalisches Institut, Technical University Aachen, D-5100 Aachen, FRG
F. Grafahrend
Affiliation:
Institute of Semiconductor Electronics and II. Physikalisches Institut, Technical University Aachen, D-5100 Aachen, FRG
A. Brauers
Affiliation:
Institute of Semiconductor Electronics and II. Physikalisches Institut, Technical University Aachen, D-5100 Aachen, FRG
H. Lüth
Affiliation:
Institute of Semiconductor Electronics and II. Physikalisches Institut, Technical University Aachen, D-5100 Aachen, FRG
P. Balk
Affiliation:
Institute of Semiconductor Electronics and II. Physikalisches Institut, Technical University Aachen, D-5100 Aachen, FRG
Get access

Abstract

This study describes the application of a dc-plasma to stimulate growth of InP in a MOCVD system using In(C2 H5)3 and PH3. Precracking of PH3 enables a substantial reduction of the growth temperature to well below 500 K. In addition, at temperatures where InP is commonly deposited (∼870 K) a significant lowering of the V/III input ratio is possible. The fact that InP is relatively insensitive to low energy ion bombardement permits deposition in a canal ray configuration.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Reep, D.H. and Ghandi, S.K. J.Electrochem. Soc. 130, 675 (1983)CrossRefGoogle Scholar
2. Heinecke, H., Veuhoff, E., PUüz, N., Heyen, M. and Balk, P. J. Electron. Mater. 13, 815 (1984)CrossRefGoogle Scholar
3. Balk, P. and Heinecke, H. in Physical Problems in Microelectronics, Ed. Kassabov, J. (World Scientific Publ. Co. Singapore, 1985) p. 190 Google Scholar
4. Hariu, T., Takenaka, K., Shlbaya, S., Komabu, Y. and Shibeta, Y. Thin Solid Films 80, 235 (1981)CrossRefGoogle Scholar
5. Shimizu, S., Tsukakoshi, O., Komiya, S. and Makita, Y. Jap. J. Appl. Phys. 24, 1130 (1985)CrossRefGoogle Scholar
6. Segui, Y., Carrere, F. and Bui, A. Thin Solid Films 92, 303 (1982)Google Scholar
7. Pande, K.P. and Aina, O. J. Vac. Sci. Technol. A4, 673 (1986)CrossRefGoogle Scholar
8. Heinecke, H., Brauers, A., Lüth, H. and Balk, P. J. Crystal Growth 77, 241 (1986) 754Google Scholar
9. Brauers, A., Grafahrend, F., Heinecke, H., Lüth, H. and Balk, P. Proceedings European MRS Meeting June 1986 Strasbourg, code R–13, 231 (1986)Google Scholar
10. Sakai, S., Yamamoto, S. and Umeno, M. Jap. J. Appl. Phys. 25, 1156 (1986)Google Scholar
11. Kasemet, O., Hess, K.L., Mohammed, K. and Merz, J.L. J. Electron. Mater. 13, 655 (1984)Google Scholar
12. Kondo, N., Kawashima, M. and Sugiura, H. Jap. J. Appl. Phys. 24, L370 (1985)Google Scholar
13. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series Vol.17 Ed.Madelung, O (Springer, Berlin, 1982) p. 567 Google Scholar
14. Yokota, K., Tamura, S. and Katayama, S. J. Crystal Growth 75, 513 (1986)Google Scholar
15. Shimizu, S., Tsukakoshi, O. and Komiya, S. Jap. J. Appl. Phys. 24, L115 (1985)CrossRefGoogle Scholar
16. Maruno, S., Morishita, Y., Isu, T., Nomura, Y. and Ogata, H. to appear in Proceedings of IV. International Conference on MBE York 1986, J. Crystal Growth 81, xxx (1987)Google Scholar
17. Warner, J.D., Pouch, J.J., Alterovitz, S.A., Liu, D.C. and Lanford, W.A. J. Vac. Sci. Technol. A3, 900 (1985)CrossRefGoogle Scholar