Skip to main content

pO2 stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ

  • Stefan F. Wagner (a1), Simon Taufall (a1), Christian Niedrig (a1), Holger Götz (a1), Wolfgang Menesklou (a1), Stefan Baumann (a2) and Ellen Ivers-Tiffée (a1) (a3)...

The mixed-conducting perovskite oxide Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), given its outstanding oxygen ionic and electronic transport properties, is considered a promising material composition for oxygen transport membranes (OTM) operated at high temperatures.

Its long-term stability under operating conditions is, however, still an important issue. Although the incompatibility of BSCF with CO2-containing atmospheres can be avoided by appropriate means (oxyfuel processes in the absence of carbon dioxide), the thermal as well as the chemical stability of BSCF itself are still under thorough investigation.

This work is focused on the stability of BSCF in the targeted temperature range for OTM applications (700…900 °C) and in atmospheres with low oxygen contents. Previous studies in literature suggest limited chemical stability below oxygen partial pressures pO2 of around 10-6 bar.

By using a coulometric titration method based on a zirconia “oxygen pump” setup, precise control of the oxygen partial pressure pO2 between 1 bar and 10-18 bar was facilitated. Combining electrical measurements on dense ceramic bulk samples performed as a function of pO2 with an XRD phase composition study of single phase BSCF powders subjected to various pO2 treatments, an assessment of the chemical stability of BSCF is facilitated as a function of oxygen partial pressure. It could thus be shown that the pO2 stability limit is considerably lower than previously assumed in literature.

Hide All
[1]Bouwmeester H. J. M. and Burggraaf A. J., “Dense Ceramic Membranes for Oxygen Separation”, in Gellings P. J. and Bouwmeester H. J. M. (Eds.), The CRC Handbook of Solid State Electrochemistry, Boca Raton, FL: CRC Press, pp. 481–553 (1997).
[2]Shao Z. P., Yang W. S., Cong Y., Dong H., Tong J. H. and Xiong G. X., Journal of Membrane Science 172, 177 (2000).
[3]Vente J. F., Haije W. G. and Rak Z. S., Journal of Membrane Science 276, 178 (2006).
[4]Shao Z. P. and Haile S. M., Nature 431, 170 (2004).
[5]Chen Z. H., Ran R., Zhou W., Shao Z. P. and Liu S. M., Electrochimica Acta 52, 7343 (2007).
[6]Bucher E., Egger A., Ried P., Sitte W. and Holtappels P., Solid State Ionics 179, 1032 (2008).
[7]Girdauskaite E., Ullmann H., Vashook V. V., Guth U., Caraman G. B., Bucher E. and Sitte W., Solid State Ionics 179, 385 (2008).
[8]Wang L., Merkle R., Maier J., Acarturk T. and Starke U., Applied Physics Letters 94, 071908–1 (2009).
[9]Burriel M., Niedrig C., Menesklou W., Wagner S. F., Santiso J. and Ivers-Tiffée E., Solid State Ionics 181, 602 (2010).
[10]Yan A., Cheng M., Dong Y. L., Yang W. S., Maragou V., Song S. Q. and Tsiakaras P., Applied Catalysis B-Environmental 66, 64 (2006).
[11]Bucher E., Egger A., Caraman G. B. and Sitte W., J. Electrochem. Soc. 155, B1218 (2008).
[12]Zhou W., Ran R. and Shao Z. P., J. Power Sources 192, 231 (2009).
[13]Svarcova S., Wiik K., Tolchard J., Bouwmeester H. J. M. and Grande T., Solid State Ionics 178, 1787 (2008).
[14]Yang Z., Harvey A. S., Infortuna A. and Gauckler L. J., J. Appl. Cryst. 42, 153 (2009).
[15]Yang Z., Harvey A. S., Infortuna A., Schoonman J. and Gauckler L. J., Journal of Solid State Electrochemistry, in press (2010).
[16]Müller D. N., De Souza R. A., Weirich T. E., Roehrens D., Mayer J. and Martin M., Physical Chemistry Chemical Physics 12, 10320 (2010).
[17]Efimov K., Xu Q. and Feldhoff A., Chemistry of Materials 22, 5866 (2010).
[18]Arnold M., Gesing T. M., Martynczuk J. and Feldhoff A., Chemistry of Materials 20, 5851 (2008).
[19]Wei B., Lu Z., Huang X. Q., Miao J. P., Sha X. Q., Xin X. S. and Su W. H., Journal of the European Ceramic Society 26, 2827 (2006).
[20]Zhou W., Ran R., Shao Z. P., Zhuang W., Jia J., Gu H. X., Jin W. Q. and Xu N. P., Acta mater. 56, 2687 (2008).
[21]Niedrig C., Burriel M., Taufall S., Wagner S. F., Menesklou W. and Ivers-Tiffee E., Journal of Membrane Science, to be published (2010).
[22]McIntosh S., Vente J. F., Haije W. G., Blank D. H. A. and Bouwmeester H. J. M., Solid State Ionics 177, 1737 (2006).
[23]Ovenstone J., Jung J. I., White J. S., Edwards D. D. and Misture S. T., Journal of Solid State Chemistry 181, 576 (2008).
[24]Beetz K., Die geschlossene Festelektrolyt-Sauerstoffpumpe [in German], Düsseldorf: VDI Verlag(1993).
[25]Jung J. I., Misture S. T. and Edwards D. D., Journal of Electroceramics 24, 261 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 67 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.