Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Ravkina, Olga Yaremchenko, Aleksey and Feldhoff, Armin 2016. Phase separation in BSCF perovskite under elevated oxygen pressures ranging from 1 to 50bar. Journal of Membrane Science,

    Niedrig, Christian Wagner, Stefan F. Menesklou, Wolfgang and Ivers-Tiffée, Ellen 2015. Characterization of oxygen-dependent stability of selected mixed-conducting perovskite oxides. Solid State Ionics, Vol. 273, p. 41.

    Wang, Fang Nakamura, Takashi Yashiro, Keiji Mizusaki, Junichiro and Amezawa, Koji 2014. The crystal structure, oxygen nonstoichiometry and chemical stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF). Physical Chemistry Chemical Physics, Vol. 16, Issue. 16, p. 7307.

  • MRS Proceedings, Volume 1309
  • January 2011, mrsf10-1309-ee03-41

pO2 stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ

  • Stefan F. Wagner (a1), Simon Taufall (a1), Christian Niedrig (a1), Holger Götz (a1), Wolfgang Menesklou (a1), Stefan Baumann (a2) and Ellen Ivers-Tiffée (a1) (a3)
  • DOI:
  • Published online: 01 March 2011

The mixed-conducting perovskite oxide Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), given its outstanding oxygen ionic and electronic transport properties, is considered a promising material composition for oxygen transport membranes (OTM) operated at high temperatures.

Its long-term stability under operating conditions is, however, still an important issue. Although the incompatibility of BSCF with CO2-containing atmospheres can be avoided by appropriate means (oxyfuel processes in the absence of carbon dioxide), the thermal as well as the chemical stability of BSCF itself are still under thorough investigation.

This work is focused on the stability of BSCF in the targeted temperature range for OTM applications (700…900 °C) and in atmospheres with low oxygen contents. Previous studies in literature suggest limited chemical stability below oxygen partial pressures pO2 of around 10-6 bar.

By using a coulometric titration method based on a zirconia “oxygen pump” setup, precise control of the oxygen partial pressure pO2 between 1 bar and 10-18 bar was facilitated. Combining electrical measurements on dense ceramic bulk samples performed as a function of pO2 with an XRD phase composition study of single phase BSCF powders subjected to various pO2 treatments, an assessment of the chemical stability of BSCF is facilitated as a function of oxygen partial pressure. It could thus be shown that the pO2 stability limit is considerably lower than previously assumed in literature.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2]Z. P. Shao , W. S. Yang , Y. Cong , H. Dong , J. H. Tong and G. X. Xiong , Journal of Membrane Science 172, 177 (2000).

[3]J. F. Vente , W. G. Haije and Z. S. Rak , Journal of Membrane Science 276, 178 (2006).

[4]Z. P. Shao and S. M. Haile , Nature 431, 170 (2004).

[5]Z. H. Chen , R. Ran , W. Zhou , Z. P. Shao and S. M. Liu , Electrochimica Acta 52, 7343 (2007).

[6]E. Bucher , A. Egger , P. Ried , W. Sitte and P. Holtappels , Solid State Ionics 179, 1032 (2008).

[7]E. Girdauskaite , H. Ullmann , V. V. Vashook , U. Guth , G. B. Caraman , E. Bucher and W. Sitte , Solid State Ionics 179, 385 (2008).

[8]L. Wang , R. Merkle , J. Maier , T. Acarturk and U. Starke , Applied Physics Letters 94, 071908–1 (2009).

[9]M. Burriel , C. Niedrig , W. Menesklou , S. F. Wagner , J. Santiso and E. Ivers-Tiffée , Solid State Ionics 181, 602 (2010).

[10]A. Yan , M. Cheng , Y. L. Dong , W. S. Yang , V. Maragou , S. Q. Song and P. Tsiakaras , Applied Catalysis B-Environmental 66, 64 (2006).

[11]E. Bucher , A. Egger , G. B. Caraman and W. Sitte , J. Electrochem. Soc. 155, B1218 (2008).

[12]W. Zhou , R. Ran and Z. P. Shao , J. Power Sources 192, 231 (2009).

[13]S. Svarcova , K. Wiik , J. Tolchard , H. J. M. Bouwmeester and T. Grande , Solid State Ionics 178, 1787 (2008).

[14]Z. Yang , A. S. Harvey , A. Infortuna and L. J. Gauckler , J. Appl. Cryst. 42, 153 (2009).

[15]Z. Yang , A. S. Harvey , A. Infortuna , J. Schoonman and L. J. Gauckler , Journal of Solid State Electrochemistry, in press (2010).

[16]D. N. Müller , R. A. De Souza , T. E. Weirich , D. Roehrens , J. Mayer and M. Martin , Physical Chemistry Chemical Physics 12, 10320 (2010).

[17]K. Efimov , Q. Xu and A. Feldhoff , Chemistry of Materials 22, 5866 (2010).

[18]M. Arnold , T. M. Gesing , J. Martynczuk and A. Feldhoff , Chemistry of Materials 20, 5851 (2008).

[19]B. Wei , Z. Lu , X. Q. Huang , J. P. Miao , X. Q. Sha , X. S. Xin and W. H. Su , Journal of the European Ceramic Society 26, 2827 (2006).

[20]W. Zhou , R. Ran , Z. P. Shao , W. Zhuang , J. Jia , H. X. Gu , W. Q. Jin and N. P. Xu , Acta mater. 56, 2687 (2008).

[22]S. McIntosh , J. F. Vente , W. G. Haije , D. H. A. Blank and H. J. M. Bouwmeester , Solid State Ionics 177, 1737 (2006).

[23]J. Ovenstone , J. I. Jung , J. S. White , D. D. Edwards and S. T. Misture , Journal of Solid State Chemistry 181, 576 (2008).

[25]J. I. Jung , S. T. Misture and D. D. Edwards , Journal of Electroceramics 24, 261 (2010).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *