Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T12:40:50.963Z Has data issue: false hasContentIssue false

Polymer Crystallization Studied in Confined Dimensions using Nanocomposites from Polymers and Layered Minerals

Published online by Cambridge University Press:  01 February 2011

Frank-Dieter Kuchta
Affiliation:
DUTCH POLYMER INSTITUTE, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Piet J. Lemstra
Affiliation:
DUTCH POLYMER INSTITUTE, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Andrew Keller
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1 TL, United Kingdom
Lawrence F. Batenburg
Affiliation:
TNO-TPD Materials Research & Technology, P. O. Box 595, 5600 AN Eindhoven, The Netherlands
Hartmut R. Fischer*
Affiliation:
TNO-TPD Materials Research & Technology, P. O. Box 595, 5600 AN Eindhoven, The Netherlands
*
* To whom correspondence should be addressed
Get access

Abstract

Polymer-layered silicate nanocomposites from polyamide-11 (PA-11) were prepared and the morphology and properties have been investigated in order to link the fundamental research field of polymer crystallization with the technical important field of composite materials. Semi-crystalline polymers are known to crystallize in different phases (e. g. monoclinic, hexagonal) forming chain-folded lamellar crystals. Depending on experimental conditions (e. g. temperature, pressure) the crystal size (lamellar thickness) affects the stability of these phases. The incorporation of layered silicates acting as hard walls into semi-crystalline polymers opens new possibilities to: i) study polymer crystallization in confined dimensions, and ii) provide materials from commodity or engineering polymers with enhanced properties. The effect of an external confinement introduced by highly anisotropic silicate layers of organically modified clay minerals on crystal growth and nanocomposite properties has been studied. The composites are prepared by in situ polycondensation of polyamides and/or blending via melt extrusion. The nanocomposites exhibit a homogeneous distribution of individual silicate layers at low clay contents. The lamellar thickening growth is reduced in polyamide crystallization due to the external constrained of the silicate layers in the host polymer. Furthermore these nanocomposites show a slightly enhanced thermal stability, tensile modulus and an increased elastic behavior over a broader temperature range. No distinct glass transition has been observed at highest clay contents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smock, D., Modern Plastics International, 28, 28 (1998)Google Scholar
2. Giannelis, E. P., Adv. Mater., 8, 29 (1996)Google Scholar
3. Barham, P. J., in Materials Science and Technology, edited by Cahn, R. W., Haasen, P., Kramer, E. J. (VCH Publishers, Weinheim, 1993) Vol. 12, pp. 153212 Google Scholar
4. Keller, A., Hikosaka, M., Rastogi, S., Toda, A., Barham, P. J:, Goldbeck-Wood, G., J. Mat. Sci., 29, 2579 (1994)Google Scholar
5. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O., J. Mater. Res., 5, 1185 (1993)Google Scholar
6. Brill, R., J. Prakt. Chem., 161, 49 (1942); Makromol. Chem. 18/19, 294 (1956)Google Scholar
7. Ramesh, C., Keller, A., Polymer, 35, 2483 (1994)Google Scholar
8. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O., J. Mater. Res., 5 1179 (1993)Google Scholar
9. Schwartz, E., in Kunststoff-Handbuch, edited by Vieweg, R., Müller, A. (Hanser Verlag, München, 1966) Vol., 6, p. 87;Google Scholar
Okada, A., Kawasumi, M., Tajima, I., Kurauchi, T., Kamigaito, O., J. Appl. Polym. Sci., 37, 1363 (1989);Google Scholar
Kawagushi, A., Ikawa, T., Fujiwara, Y., Tabuchi, M., Monobe, K., J. Macromol. Sci.-Phys. B20, 1 (1981)Google Scholar
10. Slichter, W. J., J. Polym. Sci., 36, 259 (1959)Google Scholar
11. Schmidt, G. F., Stuart, H. A., Naturforsch. 13a, 222 (1959)Google Scholar
12. Dadmun, M. D., Muthukumar, M., J. Chem. Phys., 98, 4850 (1993)Google Scholar
13. Fischer, H., Progress in Rubber Plastic Technology, 14, 95 (1998)Google Scholar