Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T14:57:37.072Z Has data issue: false hasContentIssue false

Polypyrrole-coated Large Deformation Strain Fabric Sensor and its Properties Study

Published online by Cambridge University Press:  01 February 2011

Xiaoyin Cheng
Affiliation:
tcxyc@inet.polyu.edu.hk, The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Hung Hom, Kowloon, Hong Kong, 00852, Hong Kong, 00852-34003173, 00852-27731432
H. Y. J. Tsang
Affiliation:
tcjoanna@inet.polyu.edu.hk, The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Hung Hom, Kowloon, Hong Kong, 00852, China, People's Republic of
Y. Li
Affiliation:
liyang@zju.edu.cn, Zhejiang University, Department of Polymer Science and Engineering, Hangzhou, Zhejiang Province, 310027, China, People's Republic of
M. Y. Leung
Affiliation:
tclens@inet.polyu.edu.hk, The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Hung Hom, Kowloon, Hong Kong, 00852, China, People's Republic of
X. M. Tao
Affiliation:
tctaoxm@inet.polyu.edu.hk, The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Hung Hom, Kowloon, Hong Kong, 00852, China, People's Republic of
X. X. Cheng
Affiliation:
tcxxch@inet.polyu.edu.hk, The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Hung Hom, Kowloon, Hong Kong, 00852, China, People's Republic of
P. Xue
Affiliation:
tcpxue@inet.polyu.edu.hk, The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Hung Hom, Kowloon, Hong Kong, 00852, China, People's Republic of
C. W. M. Yuen
Affiliation:
tcyuencw@inet.polyu.edu.hk, The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Hung Hom, Kowloon, Hong Kong, 00852, China, People's Republic of
Get access

Abstract

Conductive-polymer coated fabrics have been investigated as intelligent materials in the past years. In this paper, a flexible fabric strain sensor coated with polypyrrole is reported, which is featured with high sensitivity, good stability and large deformation. It is fabricated by chemical vapor deposition at low temperature. The effects of temperature, humidity, acid and alkaline medium have been assessed. The conductivity-strain tests reveal the sensor exhibits a high strain sensitivity of ~160 for a deformation as large as 50%, while its good stability is indicated by a small loss of conductivity after the thermal and humidity aging tests, and supported by the slight change in conductivity and sensitivity over a storage of eighteen months. The acid and alkaline solution mainly decreased their initial conductivity but have the slight effect to their sensitivity. The flexible fabric strain sensor is expected to be a promising “soft” smart material in the smart garment, wearable hardware and biomedical applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wallace, G. G., Spinks, G. M., Maguire, L. A. P. K., Teasdale, P. R., Conductive Electroactive Polymers: Intelligent Materials Systems, 2nd Ed., CRC Press, Boca Raton, FL 2003.Google Scholar
2. Jin, G., Norrish, J., Too, C., Wallace, G., Curr. Appl. Phys. 4, 366369 (2004).Google Scholar
3. Otero, T. F., Cortes, M. T., Adv. Mater. 15, 279282 (2003).Google Scholar
4. Spinks, G. M., Xi, B. B., Zhou, D. Z., Truong, V. T., Wallace, G. G., Synth. Met. 140, 273280 (2004).Google Scholar
5. Wang, L. X., Li, X. G., Yang, Y. L., React. Funct. Polym. 47, 125139 (2001).Google Scholar
6. Tessier, D., Dao, L. H., Zhang, Z., King, M. W., Guidoin, R., J. Biomater. Sci. Polymer Edn. 11, 8799 (2000).Google Scholar
7. Jiang, X. P., Tessier, D., Dao, L., Zhang, Z., J. Biomed. Mater. Res. 62, 507513 (2002).Google Scholar
8. Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo, J., Kim, M. S., Lee, J. Y., Jeong, S. H., Byun, S. W.. Zang, D. S., Yang, H. G., Polym. Adv. Technol. 13, 577583 (2002).Google Scholar
9. Kim, H. K., Byun, S. W., Jeong, S. H., Hong, Y. K., Joo, J. S., Song, K., Park, Y. H., Lee, J. Y., Mol. Cryst. Liq. Cryst. 377, 369372 (2002).Google Scholar
10. Kim, H. K., Kim, M. S., Chun, S. Y., Park, Y. H., Jeon, B. S., Lee, J. Y., Hong, Y. K., Joo, J. S., Kim, S. H., Mol. Cryst. Liq. Cryst. 405, 161169 (2003).Google Scholar
11. Kim, S. H., Jang, S. H., Byun, S. W., Lee, J. Y., Joo, J. S., Jeong, S. H., Park, M. J., J. Appl. Polym. Sci. 87, 19691974 (2003).Google Scholar
12. Kuhn, H. H., Child, A. D., Kimbrell, W. C., Synth. Met. 71, 21392142 (1995).Google Scholar
13. Oh, K. W., Park, H. J., Kim, S. H., J. App. Polym. Sci. 88, 12251229 (2003).Google Scholar
14. Scilingo, E. P., Lorussi, F., Mazzoldi, A., Rossi, D. D., IEEE Sensors J. 3, 460467 (2003).Google Scholar
15. Rossi, D. D., Santa, A. D., Mazzoldi, A., Mater. Sci. Eng. C 7, 3135 (1999).Google Scholar
16. Spinks, G. M., Wallace, G. G., Liu, L., Zhou, D. Z., Macromol. Symp. 192, 161169 (2003).Google Scholar