Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T07:17:42.107Z Has data issue: false hasContentIssue false

Polysilane-Based Thin Films with High Photosensitivity

Published online by Cambridge University Press:  01 February 2011

K. Simmons-Potter
Affiliation:
Laser, Optics and Remote Sensing Department, Sandia National Laboratories, Albuquerque, NM 87185-1423, U.S.A.
G. M. Jamison
Affiliation:
Materials Chemistry Department, Sandia National Laboratories, Albuquerque, NM 87185-1411, U.S.A.
B. G. Potter Jr
Affiliation:
Materials Chemistry Department, Sandia National Laboratories, Albuquerque, NM 87185-1411, U.S.A.
W. J. Thomes Jr
Affiliation:
Materials Chemistry Department, Sandia National Laboratories, Albuquerque, NM 87185-1411, U.S.A.
C. C. Phifer
Affiliation:
Laser, Optics and Remote Sensing Department, Sandia National Laboratories, Albuquerque, NM 87185-1423, U.S.A.
Get access

Abstract

The present work investigates the intrinsic photosensitivity of a family of poly(alkyl)(aryl)silanes and poly(hydridophenyl)silane for use in the development of photoimprinted waveguide devices. Limited testing of passive optical behavior (e.g. absorption, refractive index) and photosensitive response was performed for these materials in thin film form. It was determined that the materials exhibited dramatic photobleaching under 248 nm (KrF excimer laser) exposure. Based on a Kramers-Kronig analysis of the absorption changes, refractive index changes on the order of - 0.1 are estimated. Confirmation of this calculation has been provided via ellipsometry which estimates refractive index changes at 632 nm of -0.14 ± 0.01. In addition, embedded strips have been photoimprinted into the material to confirm waveguiding capacity of the films. Possible sources of photosensitivity in this material and its potential for application in various device configurations will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Simmons-Potter, K.; Potter, B. G. Jr; McIntyre, D. C.; Grandon, P. D. Appl. Phys. Lett. 1995, 68, 2011.Google Scholar
2. Simmons-Potter, K.; Potter, B. G. Jr; Meister, D. C.; Sinclair, M. B. J. Non-Cryst. Solids 1998, 239, 96.Google Scholar
3. Simmons-Potter, K.; Potter, B. G. Jr; Sinclair, M. B. Jpn. J. Appl. Phys. 1998, 37-1, 8.Google Scholar
4. West, R. J. Organomet. Chem. 1986, 300, 327.Google Scholar
5. Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359.Google Scholar
6. Simmons, K. D.; Stegeman, G. I.; Potter, B. G. Jr; Simmons, J. H. J. Non-Cryst. Solids 1994, 179, 254.Google Scholar
7. a. Aitken, C.; Harrod, J. F.; Samuel, E. J. Organomet. Chem. 1985, 269, C11–C13. b. Tilley, T. D. Acc. Chem. Res. 1993, 26, 22.Google Scholar
8. Pitt, C. G. in “Heteroatomic Rings, Chains and Macromolecules of Main Group Elements,” Rheingold, A. L., Ed., Elsevier, Amsterdam, 1977, p. 203.Google Scholar
9. Sun, Y. P.; Wallraff, G. M.; Miller, R. D.; Michl, J. J. Photochem. Photobiol., A 1992, 62, 333. b. Sun, Y. P.;Michl, J. J. Am. Chem. Soc. 1992, 114, 8186. c. Sun, Y. P.; Hamada, Y.; Huang, L. M.; Maxka, J.; Hsiao, J. S.; West, R.; Michl, J. J. Am. Chem. Soc. 1992, 114, 6301.Google Scholar
10. Trefonas, P. III; Damewood, J. R. Jr,; West, R.; Miller, R. D. Organometallics 1985, 4, 1318.Google Scholar
11. a. Miller, R. D.; Sooriyakumaran, R. Macromolecules 1988, 21, 3120. b. Pannell, K. H.; Rozell, J. M.; Zeigler, J. M. Macromolecules, 1988, 212, 276.Google Scholar
12. Ohta, K.; Ishida, H. Appl. Spectrosc. 1988, 42, 952.Google Scholar