Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T10:50:04.015Z Has data issue: false hasContentIssue false

Power-Law Scaling Behaviors and Kosterlitz-Thouless Transition in the Resistive State of Ultra-Thin High-Tc Superconducting Films

Published online by Cambridge University Press:  26 February 2011

T. Onogi
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350–03, Japan
R. Sugano
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350–03, Japan
Y. Murayama
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350–03, Japan
Get access

Abstract

By means of a Langevin dynamic simulation we studied the current-voltage characteristics of a two-dimensional (2D) Josephson-coupled lattice as a model high-Tc superconducting film. The result illustrates qualitative features of non-Ohmic power-law scaling behaviors observed in transport measurements, including striking effects of applied magnetic fields. We thereby suggest that the Kosterlitz-Thouless transition associated with 2D vortex-antivortex pairs may dominate over the resistive transition in weak magnetic fields H/Hc2 ≪C 1. Through a simple theoretical estimate, we also show that the KT model illustrates the thickness-dependence of resistive transition temperature and electric field effect in ultra-thin YBa2Cu3O7−x films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Onogi, T., Ichiguchi, T., and Aida, T., Solid State Commun. 69 991 (1989);Google Scholar
Ban, M., Ichiguchi, T., and Onogi, T., Phys. Rev. B40, 4419 (1989).Google Scholar
2. Martin, S. et al., Phys. Rev. Lett. 62, 667 (1989).Google Scholar
3. Kosterlitz, J. M. and Thouless, D. J., J. Phys. C 6, 1181 (1973).Google Scholar
4. Halperin, B. I. and Nelson, D. R., J. Low Temp. Phys. 36, 599 (1979).Google Scholar
5. Terashima, et al., Phys. Rev. Lett. 67, 1362 (1991).Google Scholar
6. Morgenstern, I., Müller, K. A., and Bednorz, J. G., Z. Phys. B 69, 33 (1987).Google Scholar
7. Mon, K. K. and Teitel, S., Phys. Rev. Lett. 62, 673 (1989);Google Scholar
Onogi, T., Sugano, R., and Murayama, Y., Solid State Commun. 78, 103 (1991).Google Scholar
8. Sugano, R., Onogi, T., and Murayama, Y., Phys. Rev. B45, May (1992).Google Scholar
9. Fiory, A. T. et al., Phys. Rev. Lett. 61, 1419 (1988).Google Scholar
10. Matsuda, Y. et al., preprint (submitted to Phys. Rev. Lett.).Google Scholar
11. Mannhart, J. et al., Phys. Rev. Lett. 67, 2099 (1991).Google Scholar
12. Xi, X. X. et al., Phys. Rev. Lett. 68, 1240 (1992).Google Scholar