Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T08:51:35.329Z Has data issue: false hasContentIssue false

Preparation of Protonated Titanate Nanotube Films with an Extremely Large Wetting Contrast

Published online by Cambridge University Press:  19 April 2011

Y. K. Lai
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. yklai@ntu.edu.sg; aszchen@ntu.edu.sg
Y. X. Tang
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
D. G. Gong
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
J. J. Gong
Affiliation:
State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. yklai@ntu.edu.sg; aszchen@ntu.edu.sg
Y. C. Chen
Affiliation:
State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. yklai@ntu.edu.sg; aszchen@ntu.edu.sg
C. J. Lin
Affiliation:
State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. yklai@ntu.edu.sg; aszchen@ntu.edu.sg
Z. Chen
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Get access

Abstract

A facile anodic electrophoretic deposition (EPD) process has been developed to prepare thin uniform films consisting of titanate nanotubes (TNTs) that were synthesized by a hydrothermal approach. Such an EPD process offers easy control in the film thickness and the adhesion to the substrate was found to be strong. The chemical composition and structure of the products have been characterized by HRTEM, FESEM, XRD and TG/DTA. It was found that the functionalization of TNTs plays a key role on the electrolyte stability and the successful formation of a uniform TNT film with good adhesion. The as-prepared TNT films show exceptional superhydrophilic behavior with ultra-fast spreading, while it converts to superhydrophobicity yet with high adhesion after 1H,1H,2H,2H-perfluorooctyl-triethoxysilane modification. This study provides an interesting method to prepare films with extremely high wettability contrast that are useful for producing different kinds of functional materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gong, D.W., Grimes, C.A., and Varghese, O.K., J. Mater. Res. 16, 3331 (2001).Google Scholar
2. Macak, J.M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., and Schmuki, P., Curr. Opin. Solid State Mater. Sci. 11, 3 (2007).Google Scholar
3. Lai, Y.K., Zhuang, H.F., Sun, L., Chen, Z., and Lin, C.J., Electrochim. Acta 54, 6536 (2009).Google Scholar
4. Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., and Grimes, C.A., Nanotechnology 18, 065707 (2007).Google Scholar
5. Liu, Z.Y., Subramania, V., and Misra, M., J. Phys. Chem. C 113, 14028 (2009).Google Scholar
6. Wang, J., and Lin, Z.Q., Chem. Mater. 22, 579 (2010).Google Scholar
7. Lai, Y.K., Sun, L., Chen, Y.C., Zhuang, H.F., Lin, C.J., and Chin, J. W., J. Electrochem. Soc. 153, D123 (2006).Google Scholar
8. Zhuang, H.F., Lin, C.J., Lai, Y.K., Sun, L., and Li, J., Environ. Sci. Technol. 41, 4735 (2007).Google Scholar
9. Lai, Y.K., Huang, J.Y., Zhuang, H.F., Subramaniam, V.P., Tang, Y.X., Gong, D.G., Sundar, L., Sun, L., Chen, Z., and Lin, C.J., J. Hazard. Mater. 184, 855 (2010).Google Scholar
10. Paulose, M., Mor, G.K., Varghese, O.K., Shankar, K., and Grimes, C.A., J. Photochem. Photobiol. A: Chem. 178, 8 (2006).Google Scholar
11. Gong, J.J., Lai, Y.K., and Lin, C.J., Electrochim. Acta 55, 4776 (2010).Google Scholar
12. Lai, Y.K., Gao, X.F., Zhuang, H.F., Huang, J.Y., Lin, C.J., and Jiang, L., Adv. Mater. 21, 3799 (2009).Google Scholar
13. Wang, D.A., Liu, Y., Liu, X.J., Zhou, F., Liu, W.M., and Xue, Q.J., Chem. Commun. 45, 7018 (2009).Google Scholar
14. Lai, Y.K., Lin, Z.Q., Huang, J.Y., Sun, L., Chen, Z., and Lin, C.J., New J. Chem. 34, 44 (2010).Google Scholar
15. Varghese, O.K., Gong, D.W., Paulose, M., Ong, K.G., Dickey, E.C., and Grimes, C.A., Adv. Mater. 15, 624 (2003).Google Scholar
16. Varghese, O.K., Mor, G.K., Grimes, C.A., Paulose, M., and Mukherjee, N., J. Nanosci. Nanotechnol. 4, 733 (2004).Google Scholar
17. Yang, Y., Lai, Y.K., Zhang, Q.Q., Wu, K., Zhang, L.H., Lin, C.J., and Tang, P.F., Colloids Surf. B 79, 309 (2010).Google Scholar
18. Lai, Y.K., Huang, Y.X., Huang, J.Y., Wang, H., Chen, Z., and Lin, C.J., Colloids Surf. B 76, 117 (2010).Google Scholar
19. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., Langmuir 14, 3160 (1998).Google Scholar
20. Ma, R., Sasaki, T., and Bando, Y., J. Am. Chem. Soc. 126, 10382 (2004).Google Scholar
21. Tang, Y.X., Gong, D.G., Lai, Y.K., Shen, Y.Q., Zhang, Y.Y., Tao, J., Lin, C.J., Dong, Z.L., and Chen, Z., J. Mater. Chem. 20, 10169 (2010).Google Scholar
22. Tang, Y.X., Lai, Y.K., Gong, D.G., Goh, K.H., Lim, T.T., Dong, Z.L., and Chen, Z., Chem. Eur. J. 16, 7704 (2010).Google Scholar
23. Lai, Y.K., Chen, Y.C., Zhuang, H.F., and Lin, C.J., Mater. Lett. 62, 3688 (2008).Google Scholar
24. Zhu, H.Y., Lan, Y., Gao, X.P., Ringer, S.P., Zheng, Z.F., Song, D.Y., and Zhao, J.C., J. Am. Chem. Soc. 127, 6730 (2005).Google Scholar
25. Morgado, E., de Abreu, M.A.S., Moure, G.T., Marinkovic, B.A., Jardim, P.M., and Araujo, A.S., Chem. Mater. 19, 665 (2007).Google Scholar
26. Hsiao, P., Wang, K., Cheng, C., and Teng, H., J. Photochem. Photobiol. A: Chem. 188, 19 (2007).Google Scholar
27. Han, C., Hong, D., Kim, I., Gwak, J., Han, S., and Singh, K.C., Sens. Actuator B: Chem. 128, 320 (2007).Google Scholar
28. Miyauchi, M., and Tokudome, H., J. Mater. Chem. 17, 2095 (2007).Google Scholar
29. Lai, Y.K., Huang, J.Y., Gong, J.J., Huang, Y.X., Wang, C.L., Chen, Z., and Lin, C.J., Electrochem. Commun. 11, 2268 (2009).Google Scholar
30. Tian, Z.R.R., Voigt, J.A., Liu, J., Mckenzie, B., and Xu, H.F., J. Am. Chem. Soc. 125, 12384 (2003).Google Scholar
31. Gao, B., Yue, G.Z., Qiu, Q., Cheng, Y., Shimoda, H., Fleming, L., and Zhou, O., Adv. Mater. 13, 1770 (2001).Google Scholar
32. Kim, G.S., Ansari, S.G., Seo, H.K., Kim, Y.S., and Shin, H.S., J. Appl. Phys. 101, 024314 (2007).Google Scholar
33. Lai, Y.K., Huang, J.Y., Gong, J.J., Huang, Y.X., Wang, C.L., Chen, Z., and Lin, C.J., J. Electrochem. Soc. 156, D480 (2009).Google Scholar
34. Lai, Y.K., Lin, C.J., Wang, H., Huang, J.Y., Zhuang, H.F., and Sun, L., Electrochem. Commun. 10, 387 (2008).Google Scholar
35. Feng, L., Li, S.H., Li, Y.S., Li, H.J., Zhang, L.J., Zhai, J., Song, Y.L., Liu, B.Q., Jiang, L., and Zhu, D.B., Adv. Mater. 14, 1857 (2002).Google Scholar
36. Yao, X., Chen, Q., Xu, L., Li, Q., Song, Y.L., Gao, X.F., Quéré, D., and Jiang, L., Adv. Funct. Mater. 20, 656 (2010).Google Scholar
37. Lai, Y.K., Lin, C.J., Huang, J.Y., Zhuang, H.F., Sun, L., and Nguyen, T., Langmuir 24, 3867 (2008).Google Scholar
38. Chen, X.H., Yang, G.B., Kong, L.H., Dong, D., Yu, L.G., Chen, J.M., and Zhang, P.Y., Cryst. Growth Des. 9, 2656 (2009).Google Scholar
39. Lee, W., Park, B.G., Kim, D.H., Ahn, D.J., Park, Y., Lee, S.H., and Lee, K.B., Langmuir 26, 1412 (2010).Google Scholar
40. Liu, M.J., Zheng, Y.M., Zhai, J., and Jiang, L., Acc. Chem. Res. 43, 368 (2010).Google Scholar