Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T14:06:01.863Z Has data issue: false hasContentIssue false

Pressure-Enhanced Solid Phase Epitaxy: Implications for Point Defect Mechanisms

Published online by Cambridge University Press:  26 February 2011

Guo-Quan Lu
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
Eric Nygren
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus OH43210
Michael J. Aziz
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
Get access

Abstract

We have measured the effects of hydrostatic pressure on the solid phase epitaxial growth (SPEG) rates of undoped Ge(100) and Si(100) into their respective self-implanted amorphous phases. We found that pressure enhances the growth process in both Si and Ge, with activation volumes equal to -3.3 ± 0.3 cm3/mole for Si and -6.3 ± 0.60 cm3/mole for Ge. The results of this and other experiments are inconsistent with all bulk point-defect mechanisms, but are consistent with all interface point-defect mechanisms, proposed to date for thermal SPEG. A kinetic analysis of the Spaepen-Turnbull dangling bond mechanism shows it to be a highly plausible model for the growth process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Csepregi, L., Kennedy, E.F., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
[2] Csepregi, L., Kullen, R.P., Mayer, J.W., and Sigmon, T.W., Solid State Commun. 21, 1019 (1977).CrossRefGoogle Scholar
[3] Olson, G.L. and Roth, J.A., Mater. Sci. Reports 3, 1 (1988).CrossRefGoogle Scholar
[4] Grimaldi, M.G., Maenpaa, M., Paine, B.M., Nicolet, M.-A., Lau, S.S., and Tseng, W.F., J. Appl. Phys. 52, 1351 (1981).Google Scholar
[5] Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M., and Jacobson, D.C., J. Appl. Phys. 51, 1795 ((1985).Google Scholar
[6] Suni, I., Goltz, G., Nicolet, M.-A., and Lau, S.S., Thin Solid Films 29, 171 (1982).Google Scholar
[7] Linnros, J., Svensson, B., and Holmden, G., Phys. Rev. B30, 3629 (1984).Google Scholar
[8] Williams, J.S., Elliman, R.G., Brown, W.L., and Seidel, T.E., Phys. Rev. Lett. 55, 1482 (1985).Google Scholar
[9] Lulli, G., Merli, P.G., and Antisari, M.V., MRS Symp. Proc. 100, 375 (1988).Google Scholar
[10] Ferla, A. La, Rimini, E., Cannavo, S., and Ferla, G., MRS Symp. Proc. 3, 381 (1988).Google Scholar
[11] Priolo, F., Ferla, A. La, and Rimini, E., J. Mat. Res. 3, 1212 (1988).Google Scholar
[12] Spaepen, F. and Turnbull, D., AIP Conf. Proc. 50, 73 (1979).Google Scholar
[13] Williams, J.S. and Elliman, R.G., Phys. Rev. Lett. 51, 1069 (1983).Google Scholar
[14] Narayan, J., J. Appl. Phys. 53, 8607 (1982).Google Scholar
[15] Mosley, L.E. and Paesler, M.A., Appl. Phys. Lett. 45, 86 (1984).Google Scholar
[16] Pantelides, S.T., MRS Symp. Proc. 100, 387 (1988).Google Scholar
[17] Lu, G.Q., Nygren, E., Aziz, M.J., Turnbull, D., and White, C.W., Appl. Phys. Lett. 54, 2583 (1989).Google Scholar
[18] Lu, G.Q., Nygren, E., Aziz, M.J., Turnbull, D., and White, C.W., Appl. Phys. Lett. 56, 137 (1990).Google Scholar
[19] Lu, G.Q., Ph.D. Thesis, Harvard University (1990).Google Scholar
[20] Piermarini, G.J., Block, S., Barnett, J.D., and Forman, R.A., J. Appl. Phys. 46, 2774 (1975).Google Scholar
[21] Forman, R.A., Piermarini, G.J., Barnett, J.D., and Block, S., Science 176, 284 (1972).Google Scholar
[22] Olson, G.L., Kokorowski, S.A., McFarlane, R.A., and Hess, L.D., Appl. Phys. Lett. 31, 1019 (1980).Google Scholar
[23] Werner, M., Mehrer, H., and Hochheimer, H.D., Phys. Rev. B32, 3930 (1985).Google Scholar
[24] Watkins, G.D., Deep Centers in Semiconductors, edited by Pantelides, S.T., (Gordon and Breach, New York, 1986), p. 147.Google Scholar
[25] Antonelli, A. and Bernholc, J., Phys. Rev. B 40, 10643 (1989).Google Scholar
[26] Kalinowski, L. and Seguin, R., Appl. Phys. Lett. 35, 211 (1979); Appl. Phys. Lett. 36, 171 (1980).Google Scholar
[27] Devaud, G., Aziz, M.J., and Turnbull, D., J. Non-Cry. Sol. 109, 121 (1989).CrossRefGoogle Scholar
[28] Aziz, M.J., Sabin, P., and Lu, G.Q., submitted to Phys. Rev. Lett.; see also MRS Symp. Proc. 202 (1990).Google Scholar
[29] Witvrouw, A. and Spaepen, F., this volume.Google Scholar
[30] Fratello, V.J., Hays, J.F., Spaepen, F., and Turnbull, D., J. Appl. Phys. 51, 6160 (1980).Google Scholar
[31] Aziz, M.J. (unpublished).Google Scholar
[32] Krishnamurthy, S., Berding, M.A., Sher, A., and Chen, A.-B., Phys. Rev. Lett. 64, 2531 (1990).Google Scholar
[33] See, for example, Walser, R.M. and Jeon, Y.-J., this volume.Google Scholar
[34] Shimomura, O., Minomura, S., Sakai, N., Asaumi, K., Tamura, K., Fukushima, J., and Endo, H., Philos. Mag. 22, 547 (1974).CrossRefGoogle Scholar
[35] Lu, G.Q., Nygren, E., and Aziz, M.J., to be published.Google Scholar