Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T04:51:41.568Z Has data issue: false hasContentIssue false

Probing Semiconductor/Insulator Heterostructures Through Electron Spin Resonance of Point Defects: Interfaces, Interlayers, and Stress

Published online by Cambridge University Press:  26 February 2011

A. Stesmans
Affiliation:
andre.stesmans@fys.kuleuven.be, University of Leuven, Physics, Celestijnenlaan 200 D, Leuven, 3001, Belgium
K. Clémer
Affiliation:
katrijn.clemer@fys.kuleuven.be, Semiconductor Physics Laboratory, INPAC, University of Leuven, Department of Physics, Celestijnenlaan 200 D, Leuven, 3001, Belgium
P. Somers
Affiliation:
pieter.somers@fys.kuleuven.be, Semiconductor Physics Laboratory, INPAC, University of Leuven, Department of Physics, Celestijnenlaan 200 D, Leuven, 3001, Belgium
V. V. Afanas'ev
Affiliation:
valeri.afanasiev@fys.kuleuven.be, Semiconductor Physics Laboratory, INPAC, University of Leuven, Department of Physics, Celestijnenlaan 200 D, Leuven, 3001, Belgium
Get access

Abstract

Electron spin resonance (ESR) spectroscopy has become indispensable when it comes to the characterization on atomic-scale of structural, and correlated, electrical properties of actual semiconductor/insulator heterostructures. Through probing of paramagnetic point defects such as the Pb-type defects, E', and EX as a function of VUV irradiation and post deposition heat treatment, basic information as to the nature, quality, and thermal stability of the interface and interfacial regions can be established. This is illustrated by some specific examples of ESR analysis on contemporary Si/insulator structures promising for future developments in integrated circuits. First the impact of strain on the Si/SiO2 entity will be discussed. Through ESR analysis of thermally oxidized (111)Si substrates mechanically stressed in situ during oxidation, and tensile strained (100)sSi/SiO2 structures, it will be pointed out that in-plane tensile stress in Si can significantly improve the interface quality. Next, ESR results for stacks of (100)Si/SiOx/HfO2 and (100)Si/LaAlO3 are presented, revealing the potential to attain a high quality Si/SiO2 interface for the former and an abrupt, thermally stable interface for the latter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Helms, R. and Poindexter, E., Rep. Prog. Phys. 57, 791 (1994).Google Scholar
[2] Houssa, M., Pantisano, L., Ragnarsson, L.-Å., Degraeve, R., Schram, T., Pourtois, G., De Gendt, S., Groeseneken, G., and Heyns, M. M., Mat. Sci. and Eng. R 51, 37 (2006).Google Scholar
[3] Wilk, G. D., Wallace, R M., and Anthony, J. M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
[4] Robertson, J., Eur. J. Appl. Phys. 28, 265 (2004).Google Scholar
[5] Brower, K.L., Phys. Rev. B 38, 9657 (1988).Google Scholar
[6] Stesmans, A., Phys. Rev. B 48, 2418 (1993).Google Scholar
[7] Stesmans, A. and Afanas.ev, V. V., J. Appl. Phys. 83, 2449 (1998).Google Scholar
[8] See, e.g., Griscom, D. L., in Glass: Science and Technology Vol.4B, edited by Uhlmann, D.R. and Kreidl, N. J. (Academic Press, N.Y., 1990), p. 151.Google Scholar
[9] Stesmans, A., Phys. Rev. B 45, 9502 (1992); A. Stesmans and F.Scheerlinck, Phys. Rev. B 50, 5204 (1994); J. Appl. Phys. 75, 1047 (1994).Google Scholar
[10] Gerardi, G. J., Poindexter, E. H., Caplan, P. J., and Johnson, N. M., Appl. Phys. Lett. 49, 348 (1986); A. Stesmans and V.V. Afanas'ev, Phys. Rev. B 57, 10030 (1998).Google Scholar
[11] International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 2005).Google Scholar
[12] Quevedo-Lopez, M. A., Voskay, M. R., Chambers, J. J., Bevan, M. J., Lifatou, A., Colombo, L., Kim, M. J., Gnade, B. E., and Wallace, R. M. J., Appl. Phys. 97, 043508 (2005).Google Scholar
[13] Hoyt, J. L., Nayfeh, H. M., Eguchi, S., Aberg, I., Xia, G., Drake, T., Fitzgerald, E. A., and Antoniadis, D. A., IEDM Tech. Dig. 2002, p. 23.Google Scholar
[14] Rim, K., Hoyt, J. L., and Gibbons, J., IEEE trans. electron devices. 47, 1406 (2000).Google Scholar
[15] Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T., and Lochtefeld, A., J. Appl. Phys. 97, 011101 (2005).Google Scholar
[16] Stesmans, A., Pierreux, D., Jaccodine, R. J., Lin, M.-T., and Delph, T. J., Appl. Phys. Lett. 82, 3038 (2003).Google Scholar
[17] Stesmans, A., Somers, P., Afanas.ev, V. V., Claeys, C., and Simoen, E., Appl. Phys. Lett. 89, 152103 (2006).Google Scholar
[18] Stesmans, A. and Afanas.ev, V. V., Appl. Phys. Lett. 82, 4074 (2003).Google Scholar
[19] Stesmans, A. and Afanas.ev, V. V., J. Appl. Phys. 97, 033510 (2004).Google Scholar
[20] Stesmans, A., Clémer, K., Afanas.ev, V. V., Edge, L. F., and Schlom, D. G., Appl. Phys. Lett. 89, 112121 (2006).Google Scholar
[21] Poindexter, E. H., Semicond. Sci. Technol. 4, 961 (1989).Google Scholar
[22] Brower, K. L., Phys. Rev. B 42, 3444 (1990).Google Scholar
[23] Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E., and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
[24] Griscom, D. L., J. Appl. Phys. 58, 2524 (1958), and references therein.Google Scholar
[25] Edwards, A. H., J. Non-Cryst. Solids 187, 232 (1995).Google Scholar
[26] Stesmans, A., Phys. Rev. B. 61, 8343 (2000).Google Scholar
[27] Pusel, A., Wetterauer, U., and Hess, P., Phys. Rev. Lett. 81, 645 (1998).Google Scholar
[28] Mihalyi, A., Jaccodine, R. J., and Delph, T. J., Appl. Phys. Lett. 74, 1981 (1999).Google Scholar
[29] Stesmans, A. and Afanas.ev, V.V., Phys. Rev. B 54, R11129 (1996).Google Scholar
[30] See, e.g., Fitch, J. T., Bjorkman, C. H., Lucovsky, G., Pollak, F. H., and Yin, X., J. Vac. Sci. Technol. B 7, 775 (1989).Google Scholar
[31] Cheng, Z., T.Currie, M., Leitz, C.W., Taraschi, G., Fitzgerald, E. A., Hoyt, J. L., and Antoniadas, D. A., IEEE Electron Device Lett. 22, 321 (2001).Google Scholar
[32] Drake, T. S., Chléirigh, C. N., Lee, M. L., Pitera, A.J., Fitzgerald, E. A., Antoniadis, D. A., Anjum, D. H., Hull, J. Li R., Klymko, N., and Hoyt, J. L., Appl. Phys. Lett. 83, 875 (2003).Google Scholar
[33] Sugii, N., J. Appl. Phys. 89, 6459 (2001).Google Scholar
[34] Cohen, G.M., Mooney, P.M., Paruchuri, V.K., and Hovel, H. J., Appl. Phys. Lett. 86, 251902 (2005).Google Scholar
[35] Delhougne, R., Meunier-Beillard, M., Caymax, M., Loo, R., and Vandervorst, W., Appl. Surf. Sci. 224, 91 (2004).Google Scholar
[36] Olsen, S.H., O'Neill, A.G., Norris, D.J., Cullis, A.G., Bull, S.J., Chattopadhyay, S., Kwa, K.S.K., Drisdoll, L.S., Waite, A.M., Tang, Y.T., and Evans, A.G.R., Mat. Sci. and Eng. B 109, 78 (2004).Google Scholar
[37] Welser, J., Hoyt, J. L., and Gibbons, J. F., Jpn. J. Appl. Phys. 33, 2419, (1994).Google Scholar
[38] See, e. g., Vandervorst, W., Brijs, B., Bender, H., Conrad, O. T., Petry, J., Richard, O., Van Elshocht, S., Delabie, A., Caymax, M., and De Gendt, S., Mat. Res. Soc. Symp. Proc. Vol.745, 23 (2003).Google Scholar
[39] Stesmans, A. and Afanas.ev, V. V., J. Phys.: Condens. Matter. 13, L673 (2001); Appl. Phys. Lett. 80, 1957 (2002).Google Scholar
[40] Cantin, J. L. and von Bardeleben, H. J., J. Non-Cryst. Solids 303, 175 (2002); S. Baldovino, S. Nokrin, G. Scarel, M. Fanciulli, T. Graf, and M. S. Brandt, J. Non-Cryst. Solids 322, 168 (2003); A. Y. Kang, P. M. Lenahan, J. F. Conley, Jr., and R. Solanski, Appl. Phys. Lett. 81, 1128 (2002); B. J. Jones, and R. C. Barklie, Microelectron. Eng. 80, 74 (2005).Google Scholar
[41] Park, B. E. and Ishiwara, H., Appl. Phys. Lett. 79, 806 (2001).Google Scholar
[42] Park, B. E. and Ishiwara, H., Appl. Phys. Lett. 82, 1197 (2003).Google Scholar
[43] Edge, L. F., Schlom, D. G., Brewer, R. T., Chabal, Y. J., Williams, J. R., Chambers, S. A., Hinkle, C., Lucovsky, G., Yang, Y., Stemmer, S., Copel, M., Holländer, B., and Schubert, J., Appl. Phys. Lett. 84, 4629 (2004).Google Scholar
[44] Lu, X. B., Zhang, X., Huang, R., Lu, H. B., Chen, Z. H., Xiang, W. F., He, M., Cheng, B. L., Zhou, H. W., Wang, X. P., Wang, C. Z., and Nguyen, B. Y., Appl. Phys. Lett. 84, 2620 (2004).Google Scholar
[45] Sivasubramani, P., Kim, M. J., Gnade, B. E., Wallace, R. M., Edge, L. F., Schlom, D. L., Craft, H. S., and Maria, J. P., Appl. Phys. Lett. 86, 201901 (2005).Google Scholar
[46] Lee, B. H., Kang, L., Nieh, R., Qi, W. J., and Lee, J. C., Appl. Phys. Lett. 76, 1926 (2000).Google Scholar
[47] Gutowski, M., Jaffe, J. E., Liu, C.-L., Stoker, M., Hedge, R. I., Rai, R. S., and Tobin, P. J., Appl. Phys. Lett. 80, 1897 (2002).Google Scholar
[48] Visokay, M. R., Chambers, J. J., Rotondaro, A. L., Shanware, A., and Colombo, L., Appl. Phys. Lett. 80, 3183 (2002).Google Scholar
[49] Meuris, M., Verhaverbeke, S., Mertens, P.W., Schmidt, H.F., Heyns, M. M., Kubota, M., Philipossian, A., Dillenbeck, K., Graf, D., Schnegg, A., and deBlank, R., Microelectron. Eng. 22, 21 (1993).Google Scholar
[50] Futako, W., Umeda, T., Nishizawa, M., Yasuda, T., Isoya, J., and Yamasaki, S., J. Non-Cryst. Solids 299–302, 575 (2002).Google Scholar
[51] Stesmans, A. and Afanas.ev, V. V., Appl. Phys. Lett. 77, 1469 (2000).Google Scholar