Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T22:00:03.291Z Has data issue: false hasContentIssue false

Process Characterization of Ultra-fine Tin Oxide Fibers Synthesis

Published online by Cambridge University Press:  01 February 2011

Yu Wang
Affiliation:
wangyu@alumni.upenn.edu, University of Pennsylvania, Department of Electrical and Systems Engineering, 200 South 33rd Street, Philadelphia, PA, 19104, United States, 530-219-3644
Idalia Ramos
Affiliation:
iramos@mate.uprh.edu, University of Puerto Rico, Department of Physics & Electronics, Humacao, 00791, Puerto Rico
Jorge J. Santiago-Avilés
Affiliation:
santiago@seas.upenn.edu, University of Pennsylvania, Department of Electrical & Systems Engineering, 200 South 33rd Street, Philadelphia, PA, 19104, United States
Get access

Abstract

Tin oxide (SnO2) with rutile structure is a wide-band gap semiconductor that has been used extensively in optoelectronic devices and sensors. A fibrous shape is especially favorable for the sensor applications. The authors synthesized micro-/nano- SnO2 fibers from a precursor solution of poly (ethylene oxide) (PEO), chloroform (CHCl3) and dimethyldineodecanoate tin (C22H44O4Sn) using electrospinning and metallorganics decomposition techniques. This paper uses Fourier-transform infrared spectroscopy, thermogravimetric and differential thermal analysis, and x-ray diffraction to reveal a series of chemical and physical changes from the starting chemicals to the final product of ultra-fine SnO2 fibers: the solvent CHCl3 evaporates during the electrospinning; the organic groups in PEO and C22H44O4Sn decompose with Sn-C bond in C22H44O4Sn replaced by Sn-O between 220 and 300°C, and transform into rutile structure between 300 and 380°C; the incipient rutile lattice develops into a relatively complete degree after sintering at higher temperatures up to 600°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chopra, K., Major, S., and Panda, D., Thin Solid Films, 102, 1 (1983).Google Scholar
2. Williams, D., in Solid State Gas Sensors, edited by Moseley, P. and Tofield, B., (Adam Hilger, Bristol, Spain, 1987), p. 71.Google Scholar
3. Seal, S., Shukla, S., J. Metals, 54(9), 35 (2002).Google Scholar
4. Chuah, D. S. and Fun, H., Mater. Lett. 4 (5–7), 274 (1986).Google Scholar
5. Sinclair, W., Peters, F., Stillinger, D. and Koonce, S., J. Electrochem. Soc. 112, 1096 (1965).Google Scholar
6. Santhi, E., Dutta, V., Banjeree, A. and Chpora, K. L., J. Appl. Phys. 51(12), 6243 (1980).Google Scholar
7. Davazoglou, D., Thin Solid Films, 302, 204 (1997).Google Scholar
8. Brinker, C., Hurd, A., Schunk, P., Frye, G., Ashley, C., J. Non-Cryst. Sol, 147–148, 424, (1992).Google Scholar
9. Mishra, S., Ghanshyam, C., Ram, N., Singh, S., et al, Bull. Mater. Sci. 25, 231 (2002).Google Scholar
10. Liu, Z., Zhang, D., Han, S., Li, C., Tang, T., et al, Adv. Mater. 15, 1754 (2003).Google Scholar
11. Xu, C., Xu, G., Liu, Y., Zhao, X., Wang, G., Scriptia Mater. 46, 789 (2002).Google Scholar
12. Kolmakov, A., Zhang, Y., Cheng, G., and Moskovits, M., Adv. Mater. 15 (12), 997 (2003).Google Scholar
13. Li, D., Wang, Y. and Xia, Y., Nano Lett. 3 (8), 1167 (2003).Google Scholar
14. Formhals, A., U.S. Patent No. 1,975,504, (1934)Google Scholar
15. Wang, Y. and Santiago, J., in Advanced Fibers, Plastics, Laminates and Composites, edited by Wallenberger, F., Weston, N., Ford, R., Wool, R. and Chawla, K., Mater. Res. Soc. Symp. Proc. 702, Pittsburgh, PA, 2002), pp. 235240.Google Scholar
16. Wang, Y., Furlan, R., Ramos, I., and Santiago, J., Appl. Phys. A 78 (7), 1043 (2004).Google Scholar
17. Wang, Y. and Santiago, J., Nanotechnology, 15, 32 (2004).Google Scholar
18. Wang, Y., Aponte, M., Leon, N., Ramos, I., et al, J. Am. Ceram. Soc. 88 (8), 2059 (2005).Google Scholar
19. Wang, Y., Aponte, M., Leon, N., Ramos, I., et al, Semicond. Sci. Tech., 19, 1057 (2004).Google Scholar
20. Wang, Y., Ramos, I. and Santiago, J.., IEEE Trans Nanotechnology, in review Google Scholar
21. Silverstein, R. M. and Webster, F. X., Spectrometric Identification of Organic Compound, 6th ed. (John Wiley & Son, New York, 1998), p79.Google Scholar
22. The Aldrich Library of FT-IR spectra, Edition II, Vol. 1–4, Sigma-Aldrich Co., 1997.Google Scholar
23. NIST Chemistry Webbook, NIST Standard Reference Database Number 69, June 2005 Release, available at http://webbook.nist.gov/chemistry, Nov. 5, 2006*Google Scholar
24. Japanese National Institute of Advanced Industrial Science and Technology, Spectral Database for Organic Compounds, available at http://www.aist.go.jp/RIODB/SDBS/cgibin/ cre_index.cgi, Nov. 5, 2006*Google Scholar
25. Jensen, J. O., Spectrochimica Acta A, 60 (11), 2561 (2004).Google Scholar
26. Sacher, R. E., Davidsohn, W., Miller, F. A., ibid, 26,1011 (1970)Google Scholar
27. Amalric-Popescu, D., Bozon-Verduraz, F., Catalysis Today, 70, 139 (2001)Google Scholar