Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T12:18:24.049Z Has data issue: false hasContentIssue false

Quantitative Depth Profiling Resonance Ionization Mass Spectrometry of III-V Heterostructure Semiconductors

Published online by Cambridge University Press:  26 February 2011

A. B. Emerson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
S. W. Downey
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
R. F. Kopf
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Get access

Abstract

Resonance ionization mass spectrometry (RIMS) of neutral atoms sputtered from III-V heterostructure semiconductor materials provides quantitative information about the dopant position near interfaces. The prerequisite for quantitative results is the saturation of the ionization step. The absolute signals are affected by primary ion beam parameters which affect sputter yield, atomization efficiency and quantum state partitioning, but not ionization efficiency. We have found that matrix effects are minimal and use RIMS results to help elucidate dopant migration near interfaces and interpret SIMS matrix effects. Device performance and understanding of materials growth are both aided.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilson, R. G., Stevie, F. A., and Magee, C. W., Secondary Ion Mass Spectrometrv: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, (Wiley, New York, 1989).Google Scholar
2. Downey, S. W. and Hozack, R. S., in Secondary Ion Mass Spectrometrv. SIMS VII, edited by Benninghoven, A., Evans, C. A., Huber, A. M., McKeegan, K., Storms, H. A. and Werner, H. W., (Wiley, New York, 1990) p. 283.Google Scholar
3. Arlinghaus, H. F., Sparr, M. T., and Thonnard, N., J. Vac. Sci. and Technol. A. 8, 2318 (1990).Google Scholar
4. Pappas, D. L., Hrubowchak, D. M., Ervin, M. H. and Winograd, N., Science 243, 64 (1989).Google Scholar
5. Young, C. E., Pellin, M. J., Callaway, W. F., Jorgensen, B., Schweitzer, E. L., and Gruen, D. M., Nucl. Instr. Meth. Phys. Res. B27, 119 (1987).Google Scholar
6. Gruen, D. M., Pellin, M. J., Young, C. E., and Callaway, W. F., J. Vac Sci. Technol. 4A, 1779 (1986).CrossRefGoogle Scholar
7. Downey, S. W. and Hozack, R. S., J. Vac. Sci. and Technol. A. 8, 791 (1990).Google Scholar
8. Downey, S. W., Kopf, R. F., Schubert, E. F., and Kuo, J. M., Appl. Opt. 33, 4938 (1990).Google Scholar
9. Schubert, E. F., Kuo, J. M., Kopf, R. F., Luftman, H. S., Hopkins, L. C., and Sauer, N. J., J. Appl. Phys. 67, 1969 (1990).CrossRefGoogle Scholar
10. Downey, S. W., Emerson, A. B., Kopf, R. F., and Kuo, J. M., Surface and Interface Anal. 15, 781 (1990).Google Scholar
11. Downey, S. W. and Emerson, A. B., Anal. Chem. 63, 916 (1991).Google Scholar
12. Downey, S. W., Emerson, A. B., and Kopf, R. F., Nucl. Instr. Methods in Phys. Res. B, in press.Google Scholar