Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T05:59:45.838Z Has data issue: false hasContentIssue false

Radial Growth Model for Conical Nanobridge in Resistive Switching Memory Devices

Published online by Cambridge University Press:  22 April 2013

Tong Liu
Affiliation:
Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.
Yuhong Kang
Affiliation:
Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.
Sarah El-Helw
Affiliation:
Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.
Tanmay Potnis
Affiliation:
Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.
Marius Orlowski
Affiliation:
Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.
Get access

Abstract

A phenomenological model has been proposed for the radial growth of the copper or silver nanobridge in the conductive bridge random access memory devices. In this model, the growth rate of the bridge is proportional to the local ion flux based on the hopping mechanism. Due to the differences of the local electric field, the growth rate is different along a conical shape nanobridge. The model accounts for the growth rate difference by introducing a geometrical form factor. Based on the model, the top and bottom radii are predicted for truncated conical copper nanobridge. The model is validated with data obtained on Cu/TaOx/Pt resistive devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, W., Jeong, D. S., Kozicki, M., and Waser, R., MRS Bulletin 37, 124 (2012).CrossRefGoogle Scholar
Liu, T., Kang, Y., Verma, M., and Orlowski, M. K., IEEE Electron Device Lett. 33, 429 (2012).CrossRefGoogle Scholar
Liu, T., Verma, M., Kang, Y., and Orlowski, M. K., ECS Solid State Lett. 1, Q11 (2012).CrossRefGoogle Scholar
Liu, T., Verma, M., Kang, Y., and Orlowski, M. K., IEEE Electron Device Lett. 34, 108 (2013).CrossRefGoogle Scholar
Menzel, S., Boettger, U., and Waser, R., J. Appl. Phys. 111, 014501 (2012).CrossRefGoogle Scholar
Rahaman, S. Z., Maikap, S., Chen, W. S., Lee, H. Y., Chen, F. T., Tien, T. C., and Tsai, M. J., J. Appl. Phys. 111, 063710 (2012).CrossRefGoogle Scholar
Palma, G., Vianello, E., Cagli, C., Molas, G., Reyboz, M., Blaise, P., De Salvo, B., Longnos, F., and Dahmani, F., Int. Memory Workshop, 2012, pp. 178181.Google Scholar
Mott, N. F. and Gurney, R. W., Electronic Processes in Ionic Crystals, 2nd ed. (Dover Publications, New York, 1964) p. 42.Google Scholar
Yu, S. and Wong, H.-S. P., IEEE Trans. Electron Devices 58, 1352 (2011).Google Scholar
Russo, U., Kamalanathan, D., Ielmini, D., Lacaita, A. L., and Kozicki, M. N., IEEE Trans. Electron Devices 56, 1040 (2009).CrossRefGoogle Scholar
Ielmini, D., IEEE Trans. Electron Devices, 58, 4309 (2011).CrossRefGoogle Scholar
Russo, U., Ielmini, D., Cagli, C., and Lacaita, A. L., IEEE Trans. Electron Devices, 56, 193 (2009).CrossRefGoogle Scholar
Fejer, M. M., Rowan, S., Cagnoli, G., Crooks, D. R. M., Gretarsson, A., Harry, G. M., Hough, J., Penn, S. D., Sneddon, P. H., and Vyatchanin, S. P., Phys. Rev. D, 70, 082003 (2004).CrossRefGoogle Scholar
Jameson, J. R., Gilbert, N., Koushan, F., Saenz, J., Wang, J., Hollmer, S., Kozicki, M., and Derhacobian, N., IEEE Electron Device Lett. 33, 257 (2012).CrossRefGoogle Scholar
Wagenaar, J. J. T., Morales-Masis, M., and van Ruitenbeek, J. M., J. Appl. Phys., 111, 014302 (2012).CrossRefGoogle Scholar
Goux, L., Sankaran, K., Kar, G., Jossart, N., Opsomer, K., Degraeve, R., Pourtois, G., Rignanese, G.-M., Detavernier, C., Clima, C., Chen, Y.-Y., Fantini, A., Govoreanu, B., Wouters, D. J., Jurczak, M., Altimime, L., and Kittl, J. A., Symp. VLSI Technol., 2012, pp. 6970.Google Scholar
Liu, T., Kang, Y., El-Helw, S., Potnis, T., and Orlowski, M. K., submitted to Jpn. J. Appl. Phys.Google Scholar
Liu, Q., Long, S., Lv, H., Wang, W., Niu, J., Huo, Z., Chen, J., and Liu, M., ACS Nano, 4, 6162 (2010).CrossRefGoogle Scholar