Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T23:14:23.149Z Has data issue: false hasContentIssue false

Radiation Damage in Pyrochlore and Related Compounds

Published online by Cambridge University Press:  21 March 2011

G.R. Lumpkin
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK ANSTO Materials, Private Mail Bag 1, Menai 2234, NSW, Australia
K.R. Whittle
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
S. Rios
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
K. Trachenko
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
M. Pruneda
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
E.J. Harvey
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
S.A.T. Redfern
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
K.L. Smith
Affiliation:
ANSTO Materials, Private Mail Bag 1, Menai 2234, NSW, Australia
N.J. Zaluzec
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL, USA
Get access

Abstract

The radiation damage properties of synthetic pyrochlore-defect fluorite compounds containing lanthanides on the A-site and Ti, Zr, Sn, and Hf on the B-site have been studied extensively using Kr ion irradiation. Using statistical analysis, we show that the results can be quantified in terms of the critical temperature for amorphization, structural parameters, classical Pauling electronegativity difference, and defect energies. The best current model is able to predict the critical temperature to within about 80 degrees Kelvin. The model indicates that radiation tolerance is correlated with an increase in the X anion coordinate toward the value characteristic of the defect fluorite topology, a smaller unit cell dimension, and lower defect energies. Our analysis also demonstrates that radiation tolerance is promoted by an increase in the Pauling cation-anion electronegativity difference or, in other words, an increase in the ionicity of the chemical bonds. Of the two possible cation sites in ideal pyrochlore, the B-site cation appears to play the major role in bonding. This result is supported, for a subset of pyrochlore compounds, by ab initio calculations, which reveal a correlation between the Mulliken overlap populations of the B-site cation and the critical temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heremans, C., Weunsch, B. J., Stalick, J. K., Prince, E., Fast-ion conducting Y2(ZryTi1-y)2O7 pyrochlores: neutron Rietveld analysis of disorder induced by Zr substitution. J. Solid State Chem. 117, 108121 (1995).Google Scholar
2. Ewing, R.C. Weber, W.J., Clinard, F.W. Jr., Radiation effects in nuclear waste forms high-level radioactive waste. Progr. Nucl. Energy 29, 63127 (1995).Google Scholar
3. Lumpkin, G.R., Alpha-decay damage and aqueous durability of actinide host phases in natural hsystems. J. Nucl. Mater. 289, 136166 (2001).Google Scholar
4. Lumpkin, G.R., Smith, K.L., Gieré, R., Williams, C.T., Geochemical behaviour of host phases for actinides and fission products inn crystalline ceramic nuclear waste forms. In: Gieré, R. and Stille, P. (Eds.), Energy, Waste, and the Environment: a Geochemical Perspective, Geological Society, London, Special Publications, Vol. 236, 89111 (2004).Google Scholar
5. Smith, K.L., Zaluzec, N.J., Lumpkin, G.R., In situ studies of ion irradiated zirconolite, pyrochlore, and perovskite. J. Nucl. Mater. 250, 3652 (1997).Google Scholar
6. Wang, S.X., Wang, L.M., Ewing, R.C., Was, G.S., Lumpkin, G.R., Ion irradiation-induced phase transformation of pyrochlore and zirconolite. Nucl. Instr. Meth. Phys. Res. B 148, 704709 (1999).Google Scholar
7. Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., Govindan Kutty, K.V., Radiation stability of gadolinium zirconate: a waste form for plutonium disposition. J. Mater. Res. 14, 44704473 (1999).Google Scholar
8. Wang, S.X., Wang, L.M., Ewing, R.C., Nano-scale glass formation in pyrochlore by heavy ion irradiation. J. Non-Cryst. Solids 274, 238243 (2000).Google Scholar
9. Lumpkin, G.R., Smith, K.L., Blackford, M.G., Heavy ion irradiation studies of columbite, brannerite, and pyrochlore structure types. J. Nucl. Mater. 289, 177187 (2001).Google Scholar
10. Meldrum, A., White, C.W., Keppens, V., Boatner, L.A., Ewing, R.C., Irradiation-induced amorphization of Cd2Nb2O7 pyrochlore. Phys. Rev. B 63, 104109 (2001).Google Scholar
11. Begg, B.D., Hess, N.J., McCready, D.E., Thevuthasan, S., Weber, W.J., Heavy-ion irradiation effects in Gd2(Ti2-xZrx)O7 pyrochlores. J. Nucl. Mater. 289, 188193 (2001).Google Scholar
12. Lian, J., Zu, X.T., Kutty, K.V.G., Chen, J., Wang, L.M., Ewing, R.C., Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore. Phys. Rev. B 66, 054108 (2002).Google Scholar
13. Lian, J., Wang, L.M., Haire, R.G., Helean, K.B., Ewing, R.C., Ion beam irradiation in La2Zr2O7 - Ce2Zr2O7 pyrochlore. Nucl. Instr. Meth. Phys. Res. B 218, 236243 (2004).Google Scholar
14. Lian, J., Chen, J., Wang, L.M., Ewing, R.C., Farmer, J.M., Boatner, L.A., Helean, K.B., Radiation-induced ammorphization of rare-earth titanate pyrochlores. Phys. Rev. B 68, 134107 (2003).Google Scholar
15. Lian, J., Ewing, R.C., Wang, L.M., Helean, K.B., Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: bond-type effect. J. Mater. Res. 19, 15751580 (2004).Google Scholar
16. Ewing, R.C., Lian, J., Wang, L.M., Ion beam-induced amorphization of the pyrochlore structure type: a review. Radiation Effects and Ion Beam Modification of Materials, Wang, L.M., Fromknecht, R., Snead, L.L., Downey, D.F., Takahashi, H. (eds.), Mater. Res. Soc. Proc. 792, 3748 (2004).Google Scholar
17. Lumpkin, G.R., Whittle, K.R., Rios, S., Smith, K.L., Zaluzec, N.J., Temperature dependence of ion irradiation damage in the pyrochlores La2Zr2O7 and La2Hf2O7 . J. Phys.: Condens. Matter 16, 85578570 (2004).Google Scholar
18. Jiang, W., Weber, W.J., Young, J.S., Boatner, L.A., Irradiation induced formation of nanoparticles in cadmium niobate pyrochlore. Appl. Phys. Lett. 80, 670 (2002).Google Scholar
19. Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., Hartmann, T., Radiation tolerance of complex oxides. Science 289, 748751 (2000).Google Scholar
20. Minervini, L., Grimes, R.W., Disorder in pyrochlore oxides. J. Am. Ceram. Soc. 83, 18731878 (2000).Google Scholar
21. Trachenko, K., Pruneda, M., Artacho, E., Dove, M.T., The nature of the chemical bond and resistance to amorphization by radiation damage. Phys. Rev. B 71, 184104 (2005).Google Scholar
22. Clinard, F.W. Jr., Peterson, D.E., Rohr, D.L., Hobbs, L.W., Self-irradiation effects in 238Pu-substituted zirconolite. 1. Temperature dependence of damage. J. Nucl. Mater. 126, 245254 (1984).Google Scholar
23. Ewing, R.C., Weber, W.J., Lian, J., Nuclear waste disposal – pyrochlore (A2B2O7): nuclear waste form for the disposal of plutonium and “minor” actinides. J. Appl. Phys. 95, 59495972 (2004).Google Scholar
24. Trachenko, K., Understanding resistance to amorphization by radiation damage. J. Phys.: Condens. Matter 16, R1491–R1515 (2004).Google Scholar