Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T09:09:28.781Z Has data issue: false hasContentIssue false

Radiation Damage Theory: Past, Present and Future

Published online by Cambridge University Press:  15 March 2011

Alexander V. Barashev
Affiliation:
Department of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK
Stanislav I. Golubov
Affiliation:
Materials Science and Technology Division, ORNL, Oak Ridge, TN 37831- 6138, USA Department of Materials Science and Engineering, University of Tennessee, East Stadium Hall, Knoxville, TN 37996-0750, USA
Get access

Abstract

Efforts of many scientists for more than a half of a century have resulted in substantial understanding of the response of various materials to irradiation. The theory has contributed significantly to this process but has not acquired a status allowing it to play a decisive role in creating radiation-resistant materials. Moreover, some theoretical predictions are in contradiction with observations, which indicates that something important has escaped attention. In the present paper, the current theoretical framework and experimental data are analyzed to elucidate the reasons for such a situation. A way of developing a predictive theory is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Greenwood, G.W., Foreman, A.J.E. and Rimmer, D.E., J. Nucl. Mater. 4, 305 (1959).Google Scholar
2. Trinkaus, H., Singh, B.N. and Foreman, A.J.E., J. Nucl. Mater. 199, 1 (1992).Google Scholar
3. Singh, B.N., Golubov, S.I., Trinkaus, H., Serra, A., Osetsky, Yu.N. and Barashev, A.V., J. Nucl. Mater. 251, 107 (1997).Google Scholar
4. Singh, B.N., Eldrup, M., Zinkle, S.J. and Golubov, S.I., Philos. Mag. A 82, 1137 (2002).Google Scholar
5. Golubov, S.I., Singh, B.N. and Trinkaus, H., Philos. Mag. A 81, 2533 (2001).Google Scholar
6. Barashev, A.V. and Golubov, S.I., ORNL Report ORNL/TM-2008/141 (2008), available online via the US DOE information bridge http://www.osti.gov/bridge.Google Scholar
7. Norgett, M.J., Robinson, M.T. and Torrens, I.M., Nucl. Eng. and Design 33, 50 (1975).Google Scholar
8. Katz, J.L. and Wiedersich, H., J. Chem. Phys. 55, 1414 (1971).Google Scholar
9. Bullough, R., Eyre, B.L. and Krishan, K., Proc. R. Soc. Lond. A 346, 81 (1975).Google Scholar
10. Walters, G.P., J. Nucl. Mater. 136, 263 (1985).Google Scholar
11. Garner, F.A., Toloczko, M.B. and Sencer, B.H., J. Nucl. Mater. 276, 123 (2000).Google Scholar
12. Bacon, D.J., Osetsky, Yu.N., Stoller, R. and Voskoboinikov, R.E., J. Nucl. Mater. 323, 152 (2003).Google Scholar
13. Zinkle, S.J. and Singh, B.N., J. Nucl. Mater. 199, 173 (1993).Google Scholar
14. Singh, B.N. and Zinkle, S.J., J. Nucl. Mater. 206, 212 (1993).Google Scholar
15. Singh, B.N., Leffers, T. and Horsewell, A., . Mag. A 53, 233 (1986).Google Scholar
16. Cawthorne, C., Proc. UK/US Fast Reactor Exchange Meeting on Cladding and Duct Materials, CONF-7910113, HEDL, Richland, October 30-November 2 (1979).Google Scholar
17. Jäger, W. and Trinkaus, H., J. Nucl. Mater. 205, 394 (1993).Google Scholar
18. Guerard, B. von, Grasse, D. and Peisl, J., Phys. Rev. Lett. 44, 262 (1980).Google Scholar
19. Rubia, T. Diaz de la and Guinan, M.W., Phys. Rev. Lett. 66, 2766 (1991).Google Scholar
20. Foreman, A.J.E., Phythian, W.J. and English, C.A., Philos. Mag. A 66, 671 (1992).Google Scholar
21. Kiritani, M., J. Nucl. Mater. 251, 237 (1997).Google Scholar
22. Terentyev, D., Malerba, L. and Barashev, A.V., Philos. Mag. Lett. 85, 587 (2005).Google Scholar
23. Arokiam, A.C., Barashev, A.V., Bacon, D.J. and Osetsky, Yu.N., Philos. Mag. 87, 925 (2007).Google Scholar
24. Rowcliffe, A.F. and Lee, E.H., J. Nucl. Mater. 108–109, 306 (1982).Google Scholar
25. Pedraza, D.F. and Maziasz, P.J., in Radiation Induced Changes in Microstructure, ASTM STP 955, 161 (1987).Google Scholar
26. Boothby, R.M. and Williams, T.M., J. Nucl. Mater. 152, 123 (1988).Google Scholar
27. Farrell, K. and Houston, J.T., J. Nucl. Mater. 35, 352 (1970).Google Scholar
28. Risbet, A., Brebec, G., Lanore, J.M. and Levy, V., J. Nucl. Mater. 56, 348 (1975).Google Scholar
29. Portnykh, I.A., Kozlov, A.V., Panchenko, V.L., Chernov, V.M. and Garner, F.A., J. Nucl. Mater. 367–370, 925 (2007).Google Scholar
30. Singh, B.N. and Foreman, A.J.E., Philos. Mag. A 66, 975 (1992).Google Scholar