Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T22:29:48.167Z Has data issue: false hasContentIssue false

Radiation Effects and Defects in Cubic Boron Nitride. A Promising Multifunctional Material for Severe Environment Conditions.

Published online by Cambridge University Press:  01 February 2011

S. V. Nistor*
Affiliation:
National Institute for Materials Physics, POB MG-7 Magurele-Bucuresti, RO-077125 Romania
Get access

Abstract

Cubic boron nitride (c-BN) is a synthetic material which exhibits exceptional physicochemical properties such as: hardness, thermal conductivity, thermo-chemical stability, semiconducting properties and radiations resistance. Such outstanding properties make it a promising multifunctional material for applications in extreme conditions, as those found in the outer space environment. Its further use for such applications requires, however, a much better understanding of the lattice defects and radiation damage properties. Here we present the results of multifrequency ESR studies concerning the native and radiation induced point defects in crystalline c-BN under irradiation with high intensity 1MeV electron beams.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Taniguchi, T., Koizumi, S., Watanabe, K., Sakaguchi, I., Sekiguchi, T. and Yarnaoka, S., Diam. & Rel. Mat. 12, 1098 (2003) and references cited thereinGoogle Scholar
[2] Manfredotti, C., Vittone, E., Lo Giudice, A., Paolini, C., Fizzotti, F., Dinca, G., Ralchenko, V. and Nistor, S. V., Diam. & Rel. Mat. 10, 568 (2001)Google Scholar
[3] Watanabe, K., Taniguchi, T. and Kanda, H., Phys. Stat. Sol. a201 (11), 2561 (2004)Google Scholar
[4] Vetter, U., Taniguchi, T., Wahl, U., Correia, J., Mueller, A., Ronning, C., Hofsaess, H., Dietriech, M. and ISOLDE Collaboration, Mat. Res. Soc. Symp. Proc. v.744, M8.38.1 M. R. S., 2003.Google Scholar
[5] Yuki, T., Umeda, S. and Sugino, T., Diam. & Rel. Mater. 13, 1130 (2004) and references cited thereinGoogle Scholar
[6] Loh, K. P., Nishitani-Gamo, M., Sakaguchi, I., Taniguchi, T. and Ando, T., Appl. Phys. Lett. 72, 3023 (1998)Google Scholar
[7] Wentorf, R. H. Jr, J. Chem. Phys. 26, 956 (1957)Google Scholar
[8] Nistor, S. V., Stefan, M., Schoemaker, D. and Dinca, G., Sol. State Comm. 115, 39 (2000)Google Scholar
[9] Nistor, S. V., Stefan, M., Goovaerts, E., Bowen, A., Schoemaker, D. and Dinca, G., Diam. & Rel. Mater. 10, 14081411 (2001).Google Scholar
[10] Abragam, A. and Bleaney, B., Electron Spin Resonance of Transition Ions, Clarendon Press, Oxford, 1970.Google Scholar
[11] Nistor, S. V., Ghica, D., Stefan, M., Bowen, A. and Goovaerts, E., Phys. Stat. Sol. a201 (11), 2583 (2004)Google Scholar
[12] Nistor, S. V., Ghica, D., Stefan, M., Bowen, A. and Goovaerts, E. (to be published)Google Scholar
[13] Goovaerts, E., Nistor, S. V., Ghica, D. and Taniguchi, T., Phys. Stat. Sol. a201 (11), 2591 (2004)Google Scholar
[14] Zhang, W., Kanda, H. and Matsumoto, S., Appl. Phys. Lett. 81, 3356 (2002) and references cited thereinGoogle Scholar
[15] Hofsaess, H., Eyhusen, S. and Ronning, C., Diam. & Rel. Mat. 13, 1103 (2004)Google Scholar
[16] Shishonok, E. M. and Steeds, J. W., Diam. & Rel. Mat. 11, 1774 (2002)Google Scholar
[17] Manfredotti, C., Lo Giudice, A., Paolini, C., Vittone, E., Fizzotti, F. and Cossio, R., Phys. Stat. Sol. a201 (11), 2566 (2004)Google Scholar
[18] Teo, E. J., Bettiol, A. A., Udalagama, C. N. B. and Watt, F., Nucl. Instr. & Meth. in Phys. Res. B210, 501 (2003)Google Scholar
[19] Piquini, P., Mota, R., Schmidt, T. M. and Fazio, A., Phys. Rev. B56 (7), 3556 (1997)Google Scholar
[20] Orellana, W. and Chacham, H., Appl. Phys. Lett. 74, 2984 (1999)Google Scholar