Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-17T15:34:06.240Z Has data issue: false hasContentIssue false

Raman Studies of a-Si:H/a-SiNx and a-Si/a-SiNx Superlattices

Published online by Cambridge University Press:  25 February 2011

I. Honma
Affiliation:
Department of Chemical Engineering, the Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113Japan
T. Tanaka
Affiliation:
Department of Chemical Engineering, the Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113Japan
H. Komiyama
Affiliation:
Department of Chemical Engineering, the Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113Japan
K. Tanaka
Affiliation:
Electrotechnical Laboratory, Umezono, Tsukuba, Ibaraki,305, Japan
Get access

Abstract

First observation is reported of the deposition rate dependence of Raman-detected structural disorder in a-Si:H/a-SiNx semiconductor superlattices as well as a-Si/a-SiNx ones. FWHM of TO-like Raman peak of a-Si:H in the multilayer structure rapidly decreases as deposition rate decreases, while that of a- Si decreases more slowly. The results demonstrate that the structural disorder of a-Si:H/a-SiNx decreases as time to grow a monolayer (TGM) increases in a time range of a second, and also suggest that hydrogen covering the growing surface enhances the structural-relaxation velocity of disordered amorphous network.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Munekata, H. and Kukimoto, H., Jpn. J.Appl.Phys. 22, L542 (1983)CrossRefGoogle Scholar
2. Abeles, B. and Tiedje, T., Phys. Rev. Lett. 51, 2003 (1983)Google Scholar
3. Miyazaki, S., Ihara, Y. and Hirose, M., Phys. Rev. Lett. 59, 125(1987)Google Scholar
4. Hattori, K., Mori, T., Okamoto, H. and Hamakawa, Y., Phys. Rev. Lett. 60, 825 (1988)Google Scholar
5. Tiedje, T., Abeles, B. and Brooks, B.G., Phys.Rev.Lett. 54, 2545(1985)Google Scholar
6. Kakalios, J., Fritzsche, H. and Ibaraki, N., J. Non-Cryst. Solids 66, 339 (1984)CrossRefGoogle Scholar
7. Hundhausen, M., Ley, L. and Carius, R., Phys.Rev.Lett. 53, 1598 (1984)Google Scholar
8. Agarwal, S.C. and Guha, S., Phys. Rev. B31, 5547 (1985)CrossRefGoogle Scholar
9. Prokes, S. M. and Spaepen, F., Appl. Phys. Lett. 47, 234 (1985)CrossRefGoogle Scholar
10. Roxlo, C. B., Abeles, B. and Persons, P. D., J. Vac. Sci. Technol. B4, 1430 (1986)CrossRefGoogle Scholar
11. Abeles, B., Yang, L., Persans, P.D., Stasiewski, H. S., and Lanford, W., Appl. phys. Lett. 48, 168 (1986)Google Scholar
12. Maley, N., Lannin, J.S. and Ugur, H., J.Non-Cryst. Solids, 77&78, 1073 (1985)Google Scholar
13. Maley, N. and Lannin, J.S., Phys. Rev. B31, 5577 (1985)Google Scholar
14. Honma, I., Komiyama, H. and Tanaka, K., J. Appl. Phys. (in press)Google Scholar
15. Honma, I., Komiyama, H. and Tanaka, K., Phil.Mag. B8, 12, 423 (1989)Google Scholar
16. Beeman, D., Tsu, R. and Thorpe, M.F., Phys. Rev. B32, 875 (1985)Google Scholar
17. Lannin, J.S. in : Semiconductors and Semimetals, Vol.21B, ed. Pankove, J. (Academic, New York, 1984) P.159.Google Scholar