Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T21:51:32.262Z Has data issue: false hasContentIssue false

Raman Studies of Znse Lattice Damage and Recovery Due to N Implantation and Annealing

Published online by Cambridge University Press:  26 February 2011

A. Deneuville
Affiliation:
University of Florida, Gainesville, FL 32611.
P. Ayyub
Affiliation:
University of Florida, Gainesville, FL 32611.
C. H. Park
Affiliation:
University of Florida, Gainesville, FL 32611.
T. Anderson
Affiliation:
University of Florida, Gainesville, FL 32611.
P. Lowen
Affiliation:
University of Florida, Gainesville, FL 32611.
K.S. Jones
Affiliation:
University of Florida, Gainesville, FL 32611.
P. H. Holloway
Affiliation:
University of Florida, Gainesville, FL 32611.
Get access

Abstract

The “bulk” and near-surface regions of N implanted heteroepitaxial ZnSe films were studied using the full width at half maximum (FWHM) of the LO phonon Raman line. The “bulk” FWHM has a minimum below an annealing temperature Ta = 400°C, and increases for higher Ta. This is attributed to the relaxation of residual stress, and to an increased stress from the formation of Zn vacancies. The surface FWHM has a deep minimum near Ta = 500°C which is attributed to the relaxation of the implantation damage at lower Ta, and stress induced by Zn vacancy formation at higher Ta. Another wider peak is found just after implantation and for Ta = 600°C, and results from a sum of two peaks attributed to the heavily damaged region around Rp and to the region with Zn vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) e.g. Barghava, R. N., J. Cryst. Growth, 86 (1988) 873.CrossRefGoogle Scholar
2) a) Akimoto, K., Miyajima, T. and Mori, Y., Jpn. J. Appl. Phys., 28 (1989) L528;CrossRefGoogle Scholar
2a b) Skromme, B. J., Stoffel, M. G., Gozdz, A. S., Tamargo, M.C. and Shilbi, A. M. in Advances in Material Processing and Devices in III-V Compounds, Ed. by Sadona, D. K., Eastman, L. and Dupuis, R. (Mat. Res. Soc. Proc., 1988);Google Scholar
2b c) yoddo, T. and Yamashisha, K., Appl. Phys. Lett. 53 (1989) 2403;CrossRefGoogle Scholar
2c 2b c) yoddo, T. and Yamashisha, K., Appl. Phys. Lett. 53 (1989) 2403 d)54(1989)1778;Google Scholar
2d e); Adachi, S. and Mach;i, Y., Jpn. J. Appl. Phys. 17 (1978) 135.Google Scholar
3) Yodo, T. and Yamashita, K., J. Cryst. Growth 93 (1988) 656.CrossRefGoogle Scholar
4) a) Rama Rao, C. S., Sundaram, S., Schmidt, R. L. and Comas, J., J. Appl. Phys. 54 (1983) 1808;Google Scholar
4a b) Tiong, K. K., Amirtharaj, P. H., Pollock, F. H. and Aspnes, D. E., Appl. Phys. Lett. 44 (1984) 122.CrossRefGoogle Scholar
5) a) Aven, M., Marple, D. T. F. and Segall, B., J. Appl. Phys. 32 (1961) 2261;Google Scholar
5a b) Baillou, J., Daunay, J., Bugnet, P., Daunay, Jac, Auzary, C. and Poindesault, R., J. Phys. Chem. Solids 41 (1980) 295;Google Scholar
5b c) Umeto, T., Kamata, A., Hirahara, K. and Beppu, T., Proc. 20th Conf. Solid State Devices and Materials, (1988) 387.Google Scholar
6) a) Lacombe, J. L. and Irwin, J. C., Solid State Commun. 8 (1970) 1427;CrossRefGoogle Scholar
6a b) Irwing, J. C. and Lacombe, J. L., Can. J. Phys. 50 (1972) 2596.CrossRefGoogle Scholar
7) Nakashima, S. I., Fujii, A., Mizoguchi, K., Mitsuishi, A. and Yoneda, K., Jpn. J. Appl. Phys. 27 (1988) 1327.Google Scholar
8) Vermaak, J. S. and Petruzello, J., J. Appl. Phys. 55 (1984) 1215.Google Scholar