Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T02:31:46.066Z Has data issue: false hasContentIssue false

Rashba spin-orbit coupling in InGaAs/InP quantum wires

Published online by Cambridge University Press:  15 March 2011

Jens Knobbe
Affiliation:
Institute of Thin Films and Interfaces (ISG-1), Research Centre Jülich, 52425 Jülich, Germany
Vitaliy A. Guzenko
Affiliation:
Institute of Thin Films and Interfaces (ISG-1), Research Centre Jülich, 52425 Jülich, Germany
Thomas Schäpers
Affiliation:
Institute of Thin Films and Interfaces (ISG-1), Research Centre Jülich, 52425 Jülich, Germany
Get access

Abstract

The effect of Rashba spin-orbit coupling on the transport properties of InGaAs/InP quantum wire structures is investigated. The geometry of the wire structures was defined by selective wet chemical etching. For wires without a gate a clear beating pattern, due to the presence of the Rashba spin-orbit coupling, is observed for wires with a width down to 600 nm. For narrower wires no beating pattern is found. The experimental observations are explained by contribution of the Rashba spin-orbit coupling to the one-dimensional magnetosubbands. By depleting the one-dimensional conductor by means of a gate electrode the Rashba coupling strength could be controlled.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wolf, S. A., Science 294, 1488 (2001).Google Scholar
2. Ohno, H., Science 281, 951 (1998).Google Scholar
3. Rashba, E. I., Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960) [Sov. Phys. Solid State 2, 1109 (1960)]Google Scholar
4. Datta, S. andDas, B., Appl. Phys. Lett., 56 665 (1990).Google Scholar
5. Nitta, J., Meyer, F. E., and Takayanagi, H., Appl. Phys. Lett. 75 695 (1999).Google Scholar
6. Kiselev, A. A. and Kim, K. W., Appl. Phys. Lett. 78, 775 (2001).Google Scholar
7. Governale, M., Boese, D., Zülicke, U. andSchroll, C., Phys. Rev. B 65, 140403 (2002).Google Scholar
8. Luo, J., Munekata, M., Fang, F.F., and Stiles, P. J., Phys. Rev. B 38 10142 (1988).Google Scholar
9. Das, B.. Miller, D.C. Datta, S., Reifenberger, R., Hong, W.P., Battacharya, P.K., Singh, J., and Jaffe, M., Phys. Rev. B 39 1411 (1989).Google Scholar
10. Nitta, J., Akazaki, T., Takayanagi, H., and Enoki, T., Phys. Rev. Lett. 78, 1335 (1997).Google Scholar
11. Schäpers, Th., Engels, G., Lange, J., Klocke, Th., Hollfelder, M., and Lüth, H., J. Appl. Phys. 83, 4324 (1998).Google Scholar
12. Moroz, A. V. and Barnes, C. H. W., Phys. Rev. B 60, 14272 (1999).Google Scholar
13. Mireles, F. and Kirczenow, G., Phys. Rev. B 64 024426 (2001).Google Scholar
14. Sato, Y., Gozu, S., Kikutani, T., and Yamada, S., Physica B 272, 114 (1999).Google Scholar
15. Schäpers, Th., Knobbe, J., Hart, A. van der, and Hardtdegen, H., Sci. Technol. Adv. Mat. 4, 19 (2003)Google Scholar