Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-12T22:42:51.224Z Has data issue: false hasContentIssue false

Reduction of Cu2+ and Ni2+ In Zeolite Y Using Polyol Process: A New Approach In The Preparation Of Metal Supported Catalysts

Published online by Cambridge University Press:  15 February 2011

P. B. Malla
Affiliation:
Materials Research Laboratory, The Pennsylvania State university, University Park, PA 16802
P. Ravindranathan
Affiliation:
Materials Research Laboratory, The Pennsylvania State university, University Park, PA 16802
S. Komarneni
Affiliation:
Materials Research Laboratory, The Pennsylvania State university, University Park, PA 16802
E. Breval
Affiliation:
Materials Research Laboratory, The Pennsylvania State university, University Park, PA 16802
R. Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State university, University Park, PA 16802
Get access

Abstract

Zeolite NaY was exchanged with three levels of Cu2+ and Ni2+ ions which were subsequently reduced in ethylene glycol (polyol process) at 195° C. This process effectively reduced the transition metal ions to zerovalent forms and the degree of reduction was dependent on the amount of exchange and the location of transition metal ions. Polyol process was found to be more efficient in reducing these ions located in zeolite cages than commonly used molecular hydrogen. Comparison of reduction behavior of Cu2+ and Ni2+ ions indicated that better metal dispersion in NaY can be achieved for Ni2+ than Cu2+ by the polyol process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Naccache, C.M. and Taarit, Y.B., J. Catal. 22. 171 (1971).CrossRefGoogle Scholar
2. Naccache, C. M. and Taarit, Y.B., in Zeolite: Science and Technology. edited by Ribeiro, F.R., Rodrigues, A.E., Rollmann, L.D., and Naccache, C. (Martinus Nijhoff Publishers, Boston, 1984) p. 373.CrossRefGoogle Scholar
3. Jacobs, P.A., Tielen, M., Linart, J-P., and Uytterhoeven, J.B., J.Chem. Soc., Faraday Trans. 1 72. 2793 (1976).CrossRefGoogle Scholar
4. Couglan, B. and Keane, M. A., Catal. Lett. 4, 223 (1990).CrossRefGoogle Scholar
5. Lungsford, J. H., in Molecular Sieves-II edited by Katzer, J. R. (ACS Symp. Series 40. Am. Chem. Soc., Washington DC, 1977) p. 473.CrossRefGoogle Scholar
6. Ione, K.G., Kuznetsov, P.N., and Romannikov, V.N., in Application of Zeolites in Catalysis, edited by Boreskov, G.K. and Minachev, Kh.M. (Akademiai Kiado, Budapest 1979) p. 87.Google Scholar
7. Jacobs, P.A., in Metal Clusters in Catalysis, edited by Gates, B.C., Guczi, L., and Knozinger, H. (Elsevier, New York 1986) p. 357.CrossRefGoogle Scholar
8. Gallezot, P., in Metal Clusters in Zeolites, edited by Moskovits, M. (Wiley-Interscience, New York 1986) p. 219.Google Scholar
9. Minachev, Kh. M. and Isakov, Ya. I., Zeolite Chemistry and Catalysis, edited by Rabo, J.A. (ACS Monograph 171. Am. Chem. Soc., Washington DC 1976) p. 552.Google Scholar
10. Nicolaides, C.P. and Scurrell, M.S., in Keynotes in Energa-RelatedCatalysis edited by Kaliaguine, S. (Elsevier, New York 1988) p. 319.CrossRefGoogle Scholar
11. Homeyer, S.T. and Sachtler, W.M.H., in Zeolites: Facts. Figures, Future, edited by Jacobs, P.A. and Santen, R.A. van (Elsevier, Amsterdam 1989) p. 975.Google Scholar
12. Gallezot, P. and Bergeret, G., in Metal Microstructures in Zeolites, edited by Jacobs, P.A., Jaeger, N.I., Jiru, P., and Schulz-Ekloff, G.(Elsevier, Amsterdam 1982) p. 167.Google Scholar
13. Jaeger, N.I., Ryder, P., and Schulz-Ekloff, G., in Structure and Reactivity of Modified Zeolites, edited by Jacobs, P.A., Jaeger, N.I., Jira, P., Kazansky, V.B., and Schulz-Ekloff, G.(Elsevier, Amsterdam 1984) p. 299.CrossRefGoogle Scholar
14. Jacobs, P.A., in Metal Microstructures in Zeolites, edited by Jacobs, P.A., Jaeger, N.I., Jiru, P., and Schulz-Ekloff, G.(Elsevier, Amsterdam 1982) p. 71.Google Scholar
15. Bager, K.H., Vogt, F., and Bremer, H., in in Molecular Sieves-II edited by Katzer, J. R. (ACS Symp. Series 40, Am. Chem. Soc., Washington DC, 1977) p. 528.CrossRefGoogle Scholar
16. Suzuki, M., Tsutsumi, k., and Takahashi, H., Zeolites 2 87 (1982).CrossRefGoogle Scholar
17. Suzuki, M., Tsutsumi, k., and Takahashi, H., Zeolites 2. 193 (1982).CrossRefGoogle Scholar
18. Couglan, B. and Keane, M.A., J. Chem. Soc., Faraday Trans. 86. 1007 (1990).CrossRefGoogle Scholar
19. Couglan, B. and Keane, M.A., J. Catal. 123. 364 (1990).CrossRefGoogle Scholar
20. Couglan, B. and Keane, M.A., Zeolites 11, 2 (1991).CrossRefGoogle Scholar
21. Fievet, F., Lagier, J.P., Blin, B., Beaudoin, B., and Figlarz, M., Solid State Ionics 32/33, 198 (1989)CrossRefGoogle Scholar
22. Fievet, F., Lagier, J.P., and Figlarz, M., Mater. Res. Bull. December, 29 (1989).CrossRefGoogle Scholar
23. Ravindranathan, P., Malla, P.B., Komameni, S., and Roy, R., Catal. Lett. 6, 401 (1990).CrossRefGoogle Scholar
24. Malla, P.B., Ravindranathan, P., Komarneni, S., and Roy, R., Nature (1991) (in Press).Google Scholar