Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-08T06:45:45.311Z Has data issue: false hasContentIssue false

Relationships Between Photoluminescence Spectra and Porosity of Porous Silicon

Published online by Cambridge University Press:  21 February 2011

H.Z. Song
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R.China
L.Z. Zhang
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R.China
B.R. Zhang
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R.China
G.G. Qin
Affiliation:
Department of Physics, Peking University, Beijing 100871, P.R.China and International Center for Material Physics, Academia Sinica, Shenyang 110015, P.R.China
Get access

Abstract

It was found that porous silicon (PS) layers formed on 0.01 Ωcm (111) and 0.02 Ωcm (100) Si substrates show high photoluminescence (PL) peak energies on both lower and higher porosity sides and a minimum of PL peak energy at the moderate porosity, while those formed on 0.8 and 10Ωcm (111) p-type Si substrates show an increase of PL peak energy with porosity on the lower side and a saturation of PL peak energy with porosity on the higher side. These experimental facts are not consistent with the quantum confinement model for light emission of PS, which predicts a monotonous increase of PL peak energy with PS porosity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T., Appl. Phys.Lett. 57, 1046 (1990).Google Scholar
2. Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
3. Voos, M., Uzan, Ph., Delalande, C., Bastard, G. and Halimaoui, A., Appl. Phys. Lett. 61(10), 1213 (1992).CrossRefGoogle Scholar
4. Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1991).CrossRefGoogle Scholar
5. Tsu, R., Shen, H., and Dutta, M., Appl. Phys. Lett. 60, 112 (1992).Google Scholar
6. Gardelis, S., Rimmer, J.S., Dawson, P., Hamilton, B., Kubiak, R.A., Whall, T.E., and Parker, E.H.C., Appl. Phys. Lett. 59, 2118 (1991).Google Scholar
7. Behrensmeier, R., Namavar, Fereydooon, Amisola, G.B., Otter, F.A., and Galligan, J.M., Appl. Phys. Lett. 62, 2408 (1993).CrossRefGoogle Scholar
8. Herino, R., Bomchill, G., Barla, K., Bertrand, C. and Ginoux, J.L., J. Electrochem. Soc. 134, 1994 (1987).Google Scholar
9. Beale, M.I.J., Chew, N.G., Uren, M.J., Cullis, A.G. and Benjamin, J.D., Appl. Phys. Lett. 46(1), 86 (1985).Google Scholar
10. Smith, R.L. and Collions, S.D., J. Appl. Phys. 71(8), R1 (1992).Google Scholar
11. Qin, G.G. and Jia, Y.Q., Solid State Commun. 86, 559 (1993).Google Scholar
12. Koch, F., Petrova-Koch, V., Maschhik, T., Nikolov, A. and Gavrilenko, V.. MRS Symp. Proc. 283, 197(1993).CrossRefGoogle Scholar