Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T12:02:58.129Z Has data issue: false hasContentIssue false

Relevance of Threading Dislocations for the Thermal Oxidation of GaN (0001)

Published online by Cambridge University Press:  01 June 2015

Maria Reiner
Affiliation:
Infineon Technologies Austria AG, Siemensstr. 2, 9500 Villach, Austria Institute of Chemistry and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
Christian Koller
Affiliation:
Infineon Technologies Austria AG, Siemensstr. 2, 9500 Villach, Austria
Kurt Pekoll
Affiliation:
Infineon Technologies Austria AG, Siemensstr. 2, 9500 Villach, Austria
Rudolf Pietschnig
Affiliation:
Institute of Chemistry and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
Clemens Ostermaier
Affiliation:
Infineon Technologies Austria AG, Siemensstr. 2, 9500 Villach, Austria
Get access

Abstract

The influence of threading dislocations (TDs) on the dry thermal oxidation of c-plane gallium nitride (GaN) is investigated for oxidation temperatures above 800°C. The transformation of GaN to gallium oxide (Ga2O3) is preferably found at TDs and grain boundaries, showing enhanced vertical oxidation, compared to defect free surface sites. Therefore, the increase in surface roughness commonly obtained upon oxidation is explained by an inhomogeneous chemical reactivity associated with those crystal defects. Additionally, annealing in an N2 atmosphere showed that also decomposition is favored at such chemically reactive spots. Comparison between decomposition and oxidation suggests that at temperatures above 950°C, the Ga2O3 formation is supported by the decomposition of GaN and subsequent oxidation of the metallic gallium.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhou, Y. et al. , Solid State Electron. 52, 756 (2008).CrossRefGoogle Scholar
Niiyama, Y. et al. , Semicond. Sci. Technol. 25(12), 125006 (2010).CrossRefGoogle Scholar
Fontserè, A. et al. , Microelectron. Eng. 88, 3140 (2011).CrossRefGoogle Scholar
Hossain, T., Phys. Status Solidi C 3-4, 565 (2014).CrossRefGoogle Scholar
Lagger, P. et al. , Appl. Phys. Lett. 105, 033512 (2014).CrossRefGoogle Scholar
Wolter, S.D. et al. , Appl. Phys. Lett., 70 (16), 2156 (1997).CrossRefGoogle Scholar
Pal, S. et al. , Thin Solid Film 425, 20 (2003).CrossRefGoogle Scholar
Davis, R.F. et al. , Acta Mater. 51 (9), 5961 (2003).CrossRefGoogle Scholar
Nanako, S. et al. , Jpn. J. Appl. Phys. Pt. 1, 46 (4A), 1471 (2007)Google Scholar
Wolter, S.D. et al. , J. Electrochem. Soc., 145 (2), 629 (1998).CrossRefGoogle Scholar
Brendt, J. et al. , Phys. Chem. Chem. Phys. 11, 3127 (2009).CrossRefGoogle Scholar
Oon, H.S. and Cheong, K.Y., J. Mater. Eng. Perform. 22, 1341 (2013).CrossRefGoogle Scholar
Weidemann, O. et al. , Appl. Phys. Lett. 86, 083507 (2005).CrossRefGoogle Scholar
Reiner, M. et al. , Phys. Status Solidi. B, 1-6 (2015).Google Scholar
Kröger, F.A., The Chemistry of Imperfect Crystals (Wiley, Amsterdam and New York, 1964).CrossRefGoogle Scholar
Chaniotakis, N.A. et al. , Appl. Phys. Lett. 86, 164103 (2005).CrossRefGoogle Scholar
Xu, X.F. et al. , Proc. of the 6th Int. Conf. on Solid-State and Integrated-Circuit, 1205, (2001).CrossRefGoogle Scholar
Groh, R. et al. , Phys. Status Solidi A, 26(1), 353 (1974).CrossRefGoogle Scholar
Vartuli, C. B. et al. , MRS Proc. 423, 569 (1996).CrossRefGoogle Scholar
Randale, M.R., J. Phys Chem. B 104, 4060 (2000).Google Scholar
Haynes, W.M., CRC Handbook of Chemistry and Physics, 91st ed. (CRC Press, Boca Raton, July 2010).Google Scholar