Skip to main content
×
×
Home

Reliability and Performance of Pseudomorphic Ultraviolet Light Emitting Diodes on Bulk Aluminum Nitride Substrates

  • James Grandusky (a1), Yongjie Cui (a2), Mark C. Mendrick (a3), Shawn R. Gibb (a4) and Leo Schowalter (a5)...
Abstract

Reliability and performance of ultraviolet light emitting diodes have suffered due to the high dislocation density of the AlN and high Al-content AlxGa1-xN layers when grown on foreign substrates such as sapphire. The development of pseudomorphic layers on low dislocation density AlN substrates is leading to improvements in reliability and performance of devices operating in the ultraviolet-C (UVC) range. One major improvement is the ability to operate devices at much higher current densities and input powers than devices on sapphire substrates. This is due to the better thermal properties and lower dislocation density of devices on AlN substrates. Devices with active area of 0.001 cm2 emitting at ∼265 nm have been measured for their reliability and change in power output over time at input currents of 20 mA (20 A/cm2), 100 mA (100A/cm2) and 150 mA (150 A/cm2). When operating at currents of 20 mA over 3500 hours of consecutive operation has been demonstrated with typical decay of ∼27% over the 3500 hours. Extrapolating the decay with a linear fit gives a L50 (time to 50% of initial power) of ∼5000 hrs. However it is desirable to be able to model the decay to better understand the kinetics and better understand the mechanisms. In order to do this, the lifetime at 20 mA and 100 mA were modeled using an exponential decay function, square root transformation and a log transformation to both be able to fit the experimental data and predict future performance.

Copyright
References
Hide All
1.EPA Document # 815-D-03-007
2.Khan, A., Hwang, S., Lowder, J., Advirahan, V., and Fareed, Q., Reliability Physics Symposium, 2009 IEEE International, 89, (2009).
3.Grandusky, J. R., Smart, J. A., Mendrick, M. C., Schowalter, L. J., Chen, K. X., and Schubert, E. F., J. Cryst. Growth 311, 2864 (2009).
4.Moe, C. G. et al. Reliability Physics Symposium, 2009 IEEE International, 94 (2009).
5.Ueda, O., 1996Reliability and Degradation of III-V Optical DevicesArtech House, Inc. Norwood, MA, pgs. 279281.
6.Sawyer, S., Rumyantsev, S. L., Shur, M. S., Solid State Electronics 52, 968, (2008).
7.Keithley Instruments Inc., HCI White Paper, (2001).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed