Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-09-12T20:47:27.522Z Has data issue: false hasContentIssue false

Reorientational Motion and Phase Transitions of Cyclohexane inRestricted Geometries

Published online by Cambridge University Press:  21 February 2011

T. W. Zerda
Affiliation:
Texas Christian University, Physics Department, P. O. Box 32915, Fort Worth, TX 76129
Yong Shao
Affiliation:
Texas Christian University, Physics Department, P. O. Box 32915, Fort Worth, TX 76129
Get access

Abstract

Rotational motion of cyclohexane in the liquid and the solid plastic phaseis studied using Raman light scattering. The results are compared withmolecular dynamics simulations run for model pores of diameters similar tothose used in the experiment. The presence of the surface layer and itseffect on the relaxation times is discussed. The temperature of thesolid-solid phase transition is determined from the analysis of the ν21 band shape. It is shown that the depression of the cubicto monoclinic phase transition depends on the pore diameter and is differentfor modified and unmodified surfaces. It is suggested that molecules nearthe pore walls form the amorphous structure and only molecules near thecenter of the pore form crystallographic structure.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1 Mu, R., Malhotra, V. M., Phys. Rev. B 44, 4602 (1991)Google Scholar
2 Jackson, C. L., McKenna, G. B., J. Chem. Phys. 93, 9002 (1990)Google Scholar
3 Dore, J. C., Dunn, M., Hasebe, T., Strange, J. H., Coll. Surf. 36, 199 (1989)Google Scholar
4 Brodka, A., Zerda, T. W., J. Chem. Phys. 97, 5676 (1992)Google Scholar
5 Ruhrer, U., Falge, H. J., Brandmuller, J., J. Raman Spectrosc. 7, 15 (1978)Google Scholar
6 Seiesinska, E., Seiesinski, J., Wasiutynski, T., Godlewska, M., Wurflinger, A., J. Molec. Struct., 267, 235(1992)Google Scholar
7 Crain, J., Poon, W. C. K., Crains-Smith, A., Hatten, P. D., J. Phys. Chem. 96, 8168 (1992)Google Scholar
8 Haines, J., Gilson, D. F. R., J. Phys. Chem. 93, 7920 (1989)Google Scholar
9 Bartoli, F. J., Litovitz, T. A., J. Chem. Phys. 56, 404 and 413 (1972)Google Scholar
10 Bien, T., Doge, G., J. Raman Spectrosc. 12, 82 (1982)Google Scholar
11 Ma, W-J., Banavar, J. R. and Koplik, J., J. Chem. Phys. 97, 485 (1992)Google Scholar
12 Zerda, T. W., in Chemical Processing of Advanced Materials, eds Hench, L. L. and West, J. (J. Wiley, New York, 1991)Google Scholar
13 Zerda, T. W., Brodka, A., Coffer, J., J. Non Crystal. Sol. 168, 33 (1994)Google Scholar