Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T09:28:18.125Z Has data issue: false hasContentIssue false

Resistivity of Short-Range and Long-Range Order Changes in Ni4Mo

Published online by Cambridge University Press:  21 February 2011

T. S. Lei
Affiliation:
National Taiwan Institute of Technology, Taipei, Taiwan.
K. Vasudevan
Affiliation:
Dept. of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37916.
E. E. Stansbury
Affiliation:
Dept. of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37916.
Get access

Abstract

Short-range order (SRO) and long-range order (LRO) reactions in Ni Mo as a function of room temperature deformation ahd thermal treatments betwean −269 and 1300°C are Reported. Resistivity results show that SRO is dispersed by heating near 1300°C and by cold working to 68% reduction of area (RA). The resistivity decreases to a minimum at 68% RA after which an increase is attributed to an increase in defect density.

The resistivity as a function of variations in the time-temperature history is reported. Cooling at 60°C/min; results in the maximum “frozen in” SRO with resistivity of 144 μohm cm at 25°C; th8 resistivity of the LRO state obtained on slow cooling is 48 μohm cm. At −269°C, the resistivities are 139 and 8 μohm cm for the SRO and LRO states respectively. Correlations relate kinetics and microstructures to resistivity changes during heating, cooling and isothermal SRO-LRO transformations. Preliminary results of reheating fully ordered samples to near 868°C and quenching are reported. Results are discussed with relevance to existing theories.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harker, D., J. Chem. Phys. 12, 315 (1944).Google Scholar
2. Guthrie, P. V. and Stansbury, E. E., Report to Oak Ridge National Laboratory, ORNL-3078 (1961).Google Scholar
3. Spruiell, J. E. and Stansbury, E. E., J. Phys. Chem. Sol. 26, 811 (1965).Google Scholar
4. Ling, F. W. and Starke, E. A., Acta Met. 19, 759 (1971).Google Scholar
5. Chakravarti, B., Starke, E. A., Sparks, C. J. and Williams, R. O., J. Phys. Chem. Sol. 35, 13171326 (1974).Google Scholar
6. Ruedl, E., Delavignette, P. and Amelinckx, S., Phys. Stat. Sol. 28, 305 (1968).Google Scholar
7. Snyder, W. B. and Brooks In, C. R.: Ordered Alloys - Structural Applications and Physical Metallurgy, Kear, B. H., Sims, C. T., Stoloff, N. S. and Westbrook, J. H. (eds), Baton Rouge, Claitor's, p. 275 (1970).Google Scholar
8. Saburi, T., Kanai, E. and Nenno, S., J. of Less Common Metals 37, 59 (1974).Google Scholar
9. Okamoto, P. R. and Thomas, G., Acta Met. 19, 825 (1971).Google Scholar
10. Das, S. K., Okamoto, P. R., Fischer, P. M. J. and Thomas, G., Acta Met. 21, 913 (1973).Google Scholar
11. Thomas, G. and Sinclair, R., Acta Met. 25, 231 (1977).CrossRefGoogle Scholar
12. Chevalier, J. P. A. A. and Stobbs, W. M.. Acta Met. 24, 535 (1976).Google Scholar
13. Stobbs, W. M. and Chevalier, J. P. A. A., Acta Met. 26, 233 (1978).Google Scholar
14. Chevalier, J. P. A. A. and Stobbs, W. M., Acta Met. 27, 1197 (1979).Google Scholar
15. Banerjee, S., Urban, K. and Wilkens, M., Acta Met. 32, 299 (1984).Google Scholar
16. Irani, R. S., Ling, F. W. and Cahn, R. W., Metallography 6, 141 (1973).Google Scholar
17. Stansbury, E. E., Vasudevan, K. and Lei, T. S., Proceedings: 17th Annual Technical Meeting of the International Metallographic Society, Philadelphia (1984).Google Scholar
18. Grube, G. and Schlect, H., Ztschr. Elektrochem. 44, 413 (1938).Google Scholar
19. Baer, H. G., Z. Metallkde. 56, 79 (1965).Google Scholar
20. LeFevre, B. G., Guy, A. G. and Gould, R. W., Met. Trans. 242, 788 (1968).Google Scholar
21. Thomas, H., Z. Physik 129, 219 (1951).Google Scholar
22. Damask, A. C., J. Phys. Chem. 1, 23 (1956).Google Scholar
23. Korevaar, B. M., Acta Met. 9, 297 (1961).Google Scholar
24. van den Beukel, A. Matthijsen, A. P., Ritzen, J. M. J. and den Buurman, R., Acta. Met. 16, 435 (1968).Google Scholar
25. Livshits, B. G. and Rymashevskii, R. A., Phys. Met. Metallog. 13 (2), 41 (1962).Google Scholar
26. Starke, E. A. Jr, Gerold, V. and Guy, A. G., Acta Met. 13, 957 (1965).Google Scholar
27. Torfs, E., Stals, L., van Landuyt, J., Delavignette, P. and Amelinckx, S., Phys. Stat. Sol. (a) 22, 45 (1974).Google Scholar
28. van der Wekken, J., Taggart, R. and Polonis, D. H., Metal Science J. 5, 219 (1971).Google Scholar
29. Willey, R. J. J. Mater. Sci. 13, 871 (1978).Google Scholar
30. Babanova, Y. N., Klyuyeva, I. B., Chemerinskaya, L. S. and Siderenko, F. A., Phys. Met. Metallog. 49 (3), 184 (1980).Google Scholar
31. Meskin, V. S., Sergienko, R. I. and Potapov, L. A., Phys. Met Metallog. 13, 113 (1962).Google Scholar
32. Aarts, W. H. and Houston-Macmillan, A. S., Acta Met. 5, 525 (1957).Google Scholar
33. Logie, H. J., Jackson, J., Anderson, J. C. and Nabarro, F. R. N., Acta Met. 9, 707 (1961).Google Scholar
34. Muller, H. G. and Muth, P., Z. Metallk. 50, 217 (1959).Google Scholar
35. Brouers, F. and Brauwers, M., J. Phys. Letters 36, L17 (1975).Google Scholar
36. Vasilyeva, R. P., Narkulov, N. N., Fadin, V. P. and Arkhipov, Y. N., Phys. Met. Metallog. 48 (3), 671 (1979).Google Scholar
37. Chen, W. and Nicholson, M. E., Acta Met. 12, 687 (1964).Google Scholar
38. Damask, A. C., J. Appl. Phys. 27, 610 (1956).Google Scholar
39. Sardar, M. K. and Gupta, K. P., Scripta Met. 14, 835 (1980).Google Scholar
40. Meisterle, P. and Pfeiler, W., Acta Met. 31, 1543 (1983).Google Scholar
41. Gibson, J. B., J. Phys. Chem. Solids 1, 27 (1956).Google Scholar
42. Rossiter, P. L. and Wells, P., J. Phys. C: Solid St. Phys. 4, 354 (1971).Google Scholar
43. Rossiter, P. L., J. Phys. F: Metal Phys. 7 (3), 407 (1977).Google Scholar
44. Nicholson, D., Private communication, ORNL, Oak Ridge (1984).Google Scholar
45. Mooji, J. H., Phys. Stat. Sol. (a) 17, 521 (1973).Google Scholar
46. Richter, J. and Schiller, W., Phys. Stat. Sol. (b) 92, 511 (1979).Google Scholar
47. Pal'guyev, Y. V., Kuranov, A. A., Syutkin, P. N. and Siderenko, F. A., Phys. Met. Metallog. 41 (6), 72 (1976).Google Scholar
48. Phillips, V. A., Acta Met. 9, 976 (1961).Google Scholar
49. Marcinkowski, M. J. and Smoluchowski, R., J. Phys. Chem. Solids 26, 185 (1965).CrossRefGoogle Scholar
50. Brauwers, M., Giner, J., Van der Rest, J. and Brouers, F., Solid State Comm. 17, 229 (1975).CrossRefGoogle Scholar
51. Christoph, V., Richter, J. and Schiller, W., Phys. Stat. Sol (b) 100, 585 (1980).Google Scholar
52. Rossiter, P. L., J. Phys. F: Metal Phys. 9, 891 (1979).Google Scholar
53. Rossiter, P. L., J. Phys. F: Metal Phys. 10, 459 (1980).Google Scholar
54. Rossiter, P. L., J. Phys. F: Metal Phys. 11, 615 (1981).Google Scholar
55. Lei, T. S., Ph.D. Dissertation, University of Tennessee (1979).Google Scholar