Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-10T22:41:34.089Z Has data issue: false hasContentIssue false

Review of the Simulation of Transient Experiments on Amorphous Silicon Hydride

Published online by Cambridge University Press:  21 February 2011

Finley R. Shapiro*
Affiliation:
Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania 19104 USA
Get access

Abstract

The transient characteristics of amorphous silicon hydride (a-Si:H) devices are of great importance as a means of studying the fundamental electrical and photo-electrical processes in the material. To assist in the interpretation of these experiments, several groups have performed simulations to understand better the meaning of transient waveforms. Simulations begin with hypotheses of how the processes of interest affect each other and affect the measured quantity, and then calculate an expected experimental result. Transient experiments on a-Si:H have been simulated by a variety of techniques, including the Monte Carlo, Laplace transform, and time integration methods. Of these methods, time integration is the most powerful but also the most demanding on computer capabilities. Fortunately, recent advances in computer technology have brought the simulation of transient experiments on a-Si:H by time integration within the capabilities of advanced personal computers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haynes, J.R. and Shockley, W., Phys. Rev. 81, 835 (1951).Google Scholar
2. Seynhaeve, G., Barclay, R.P., and Adriaenssens, G.J., J. Non-Cryst. Sol. 97&98, 607 (1987).Google Scholar
3. Shapiro, F.R. and Bar-Yam, Y., J. Appl. Phys., 64, 2185 1988.CrossRefGoogle Scholar
4. Shapiro, F.R. and Bar-Yam, Y., in Amorphous Silicon Technology, edited by Hamakawa, Y., LeComber, P.G., Madan, A., Taylor, P.C., and Thompson, M.J. (Materials Research Society Proceedings 118, Pittsburgh, PA 1988) pp. 531536.Google Scholar
5. Shapiro, F.R., Ph.D. Thesis, MIT 1988.Google Scholar
6. Shapiro, F.R., Sol. St. Comm. 68, 623 (1988).Google Scholar
7. Misiakos, K. and Lindholm, F.A., J. Appl. Phys 56, 4915 (1989).Google Scholar
8. Shapiro, F.R., Bar-Yam, Y., and Silver, M., IEEE Trans. Electron. Dev. 36, 2785 (1989).Google Scholar
9. Shapiro, F. R. and Silver, M., J. Non-Cryst. Sol. 114, 351 (1989).Google Scholar
10. Shapiro, F.R., J. Appl. Phys. 70, 4001 (1991).Google Scholar
11. Hack, and Shaw, , Amorphous Silicon Technology - 1991, edited by Madan, A., Taylor, P. C., Hamakawa, Y., LeComber, P.G., and Thompson, M.J. (Materials Research Society Proceedings 219, Pittsburgh, PA 1991) pp. 315320.Google Scholar
12. Shapiro, F.R., J. Non-Cryst. Sol. 137&138, 451 (1991).CrossRefGoogle Scholar
13. Shaw, J.G., Hack, M., LeComber, P.G., and Willums, M., J. Non-Cryst. Sol. 137&138, 1233 (1991).Google Scholar
14. Shapiro, F.R., Amorphous Silicon Technology - 1991, edited by Madan, A., Taylor, P.C., Hamakawa, Y., LeComber, P.G., and Thompson, M.J. (Materials Research Society Proceedings 219, Pittsburgh, PA 1991) pp. 457462.Google Scholar
15. Shapiro, F.R., Silver, M., Amorphous Silicon Technology - 1989, edited by Hamakawa, Y., LeComber, P. G., Madan, A., Taylor, P. C., and Thompson, M. J. (Materials Research Society Proceedings, 149, Pittsburgh, PA 1989) pp. 351356.Google Scholar
16. Tiedje, T. and Rose, A., Sol. St. Comm. 37, 49 (1981).Google Scholar
17. Orenstein, J. and Kastner, M., Phys. Rev. Lett. 46, 1421 (1981).Google Scholar
18. Silver, M., Cohen, L., and Adler, D., Phys. Rev. B, 24, 4855 (1981).Google Scholar
19. Marshall, J.M. and Street, R.A., Sol. St. Comm. 50, 91 (1984).Google Scholar
20. Seynhaeve, G., Adriaenssens, G.J. and Michiel, H., Sol. St. Comm. 56, 323 (1985).Google Scholar
21. Adriaenssens, G.J. and Seynhaeve, G., J. Non-Cryst. Sol. 97&98, 133 (1987).Google Scholar
22. Nebel, C.E. and Bauer, G.H., Phil. Mag. B, 59, 463 (1989).Google Scholar
23. See, for example, Chua, L.O. and Lin, P.-M., Computer-Aided Analysis of Electronic Curcits: Algorithms & Computational Techniques, (Prentice-Hall, Englewood Cliffs, NJ, 1975) pp. 480534.Google Scholar
24. Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1971) pp. 209228.Google Scholar
25. Sokel, R. and Hughes, R.C., J. Appl. Phys. 53, 7414 (1982).Google Scholar
26. See, for example, Tiedje, T., Cebulka, J.M., Morel, D.L., and Abeles, B., Phys. Rev. Lett. 46, 1425 (1981);Google Scholar
Marshall, J.M., Street, R.A., Thompson, M.J., Phil. Mag. B, 54, 51 (1986).Google Scholar
27. Tiedje, T., in Semiconductors and Semimetals, edited by Pankove, J.I. (Academic Press, New York, 1984), Vol. 21, Part C, p. 207.Google Scholar
28. Silver, M., Adler, D., Shaw, M.P., and Cannella, V., Phil. Mag. B, 53, L89 (1986).Google Scholar