Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T02:23:30.684Z Has data issue: false hasContentIssue false

Rietveld Structure Refinement of Hydrothermally Grown Zinc Peroxide Nanoparticles

Published online by Cambridge University Press:  01 February 2011

A. García-Ruiz*
Affiliation:
UPIICSA-COFAA, Instituto Politécnico Nacional (IPN). Té 950, Col. Granjas-México, Iztacalco, 08400, México, D. F., MEXICO.
M. Aguilar
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México (UNAM). A. P. 20-364, 01000 México, D. F., MEXICO.
A. Aguilar
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM). P.O. Box 48–3, 62251, Cuernavaca, Mor., MEXICO.
A. Escobedo-Morales
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM). P.O. Box 48–3, 62251, Cuernavaca, Mor., MEXICO.
R. Esparza
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM). P.O. Box 48–3, 62251, Cuernavaca, Mor., MEXICO.
R. Pérez
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM). P.O. Box 48–3, 62251, Cuernavaca, Mor., MEXICO.
Get access

Abstract

Nanocrystals of zinc oxides have demonstrated to be very important materials for several applications in many fields, particularly in catalysis. Nanocrystalline zinc peroxide (ZnO2), which is a precursor of zinc oxide (ZnO), has been prepared by means of a hydrothermal process from zinc acetate dehydrates. On the other hand, it is of great interest to have a detailed structural characterization, in order to correlate it with the catalytic properties of the synthesized material. In this work, some results are presented about the nanostructure of the prepared zinc peroxide. By using X-ray diffraction followed of a pattern refinement by the Rietveld techniques, refined average cell parameters and crystallite size were calculated and, from these refined values, crystallite morphology was simulated in an averaged manner. With the aim to get a more complete characterization, besides these results, some micrographs of the crystalline structure of ZnO2, observed by TEM, were also included in this work.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ibarra, L., Marcos-Fernandez, A., Alzorriz, M., Polymer 43, 1649 (2002).Google Scholar
2. Ibarra, L., J. Appl. Polym. Sci. 84, 605 (2002).Google Scholar
3. Ohno, S., Aburatani, N., Ueda, N., DE Patent # 2914058 (1980).Google Scholar
4. Hagel, R., Redecker, K., DE Patent # 2952069 (1981).Google Scholar
5. Ceratelli Zinc, M., Part 1. Fonderia (Milan) 43, 24 (1994).Google Scholar
6. Farnsworth, M., Kline, C.H., Noltes, J.G., Zinc Chem. 248 (1973).Google Scholar
7. Sunderland, D.A., Binkley, J.S., Radiology (Oak Brook, IL, United States) 35, 606 (1940).Google Scholar
8. Klabunde, W., Magill, P.L., Reichert, J.S., US Patent # 2,304,104 (1942).Google Scholar
9. Rosenthal-Toib, L., Zohar, K., Alagem, M., Tsur, Y., Chem. Eng. J. 136, 425 (2008).Google Scholar
10. Uekawa, N., Kajiwara, J., Mochizuki, N., Kakegawa, K., Sasaki, Y., Chem. Lett. 7, 606 (2001).Google Scholar
11. Hsu, C. C., Wu, N. L., J. Photochem. Photobiol. A 172, 269 (2005).Google Scholar
12. Sun, M., Hao, W., Wang, C., Wang, T., Chem. Phys. Lett. 443, 342 (2007).Google Scholar
13. Zhang, Y. C., Wu, X., Ya Hu, X., Guo, R., J. Cryst. Growth 280, 250 (2005).Google Scholar
14. Szabó, T., Németh, J., Dékány, I., Colloids Surf. A: Physicochem. Eng. Aspects 230, 23 (2004).Google Scholar
15. Curridal, M.L., Comparelli, R., Cozzli, P.D., Mascolo, G., Agostiano, A., Mater. Sci. Eng. C23, 285 (2003).Google Scholar
16. Kamat, V.P., Huehn, R., Nicolaescu, R., J. Phys. Chem. B 106, 788 (2002).Google Scholar
17. Park, S.B., Kang, Y.C., J. Aerosol Sci. 28, (1997).Google Scholar
18. Gleiter, H. Acta Mater. 48, 1 (2000).Google Scholar
19. Chen, W., Lu, Y. H., Wang, M., Kroner, L., Paul, H., Fecht, H.-J., Bednarcik, J., Stahl, K., Zhang, Z. L., Wiedwald, U., Kaiser, U., Ziemann, P., Kikegawa, T., Wu, C. D., Jiang, J. Z., J. Phys. Chem. C 113, 1320 (2009).Google Scholar
20. Look, D.C., Mater. Sci. Eng. B 80, 383 (2001).Google Scholar
21. Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T., Prog. Mater. Sci. 50, 293 (2005).Google Scholar
22. Kamalasanan, M.N., Chandra, S., Thin Solid Films 288, 112 (1996).Google Scholar
23. Jezequel, D., Guenot, J., Jouini, N., Fievet, N.F., J. Mater. Res. 10, 77 (1995).Google Scholar
24. Chawla, A.K., Kaur, D., Chandra, R., Opt. Mater. 29, 995 (2007).Google Scholar
25. Iwata, K., Tampo, H., Yamada, A., Fons, P., Matsubara, K., Sakurai, K., Ishizuka, S., Niki, S., Appl. Surf. Sci. 244, 504 (2005).Google Scholar
26. Izaki, M., Omi, T., Appl. Phys. Lett. 68, 2439 (1996).Google Scholar
27. Rodríguez-Carbajal, J., Laboratoire Leon Brillouin (CEA-CNRS), France.Google Scholar
28. Thompson, P., Cox, D.E., Hasting, J.B.. J. Appl. Crystallogr. 20, 79 (1987).Google Scholar
29. Young, R.A., Desai, P.. Arch. Nauki Mater. 10, 71 (1989).Google Scholar
30. Prince, E.. J. Appl. Crystallogr. 14, 157 (1981).Google Scholar
31. Vannerberg, N.G., Arkiv foer Kemi 14, 19 (1959).Google Scholar