Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T01:09:36.903Z Has data issue: false hasContentIssue false

Ring-Related Defects in MCZ Wafer Comparison by Electrical, Structural, and Device Properties

Published online by Cambridge University Press:  15 February 2011

F. González
Affiliation:
Micron Technology Inc., 8000 S. Federal Way, P. O. Box 6, Boise, ID 83707–0006, fgonzalez@micron.com
M. McQueen
Affiliation:
Micron Technology Inc., 8000 S. Federal Way, P. O. Box 6, Boise, ID 83707–0006, fgonzalez@micron.com
R. Barbour
Affiliation:
Micron Technology Inc., 8000 S. Federal Way, P. O. Box 6, Boise, ID 83707–0006, fgonzalez@micron.com
G. A. Rozgonyi
Affiliation:
Materials Science and Engineering Dept., North Carolina State University, Raleigh, NC 27695–7916
Get access

Abstract

Thermal cycles in advanced CMOS processing can nucleate an annular ring of oxygen precipitate-induced stacking faults (OSF-ring) via activation of bulk nuclei grown-in during the crystal pulling process. Because the OSF-ring can adversely affect device characteristics, it is important that substrates with OSF-ring characteristics be detected early in the process. Results are presented in this paper from a typical DRAM device which show that the ring can act either in a beneficial gettering mode or as a device-degrading zone, depending on the depth distribution of the OSF-ring defects and the background iron impurity concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Marsden, K., Kanda, T., Okui, M., Hourai, M., and Shigematsu, T., Materials Science and Engineering B36, 1996, pp. 1621.Google Scholar
Porrini, M. and Rossetto, P., Materials Science and Engineering B36, 1996, pp. 162166.Google Scholar
3. Raebinger, J., Romanowski, A., Zhang, Q., and Rozgonyi, G., Appl. Phys. Lett. 69 (20), pp. 30373038, 11 November 1996.Google Scholar
4. Ikeda, N., Buczkowski, A., and Shimura, F., Appl. Phys. Lett., 63, p. 2914 (1993).Google Scholar
5. Rozgonyi, G. A. and Kushner, R. A., J. Electrochem. Soc., p. 570, April 1976.Google Scholar
6. Shimura, F., J. Appl. Phys., 72, p. 1642 (1992).Google Scholar
7. Claeys, C. L., Declerk, G. J., and Van Overstraeten, R. J., Appl. Phys. Lett. 35 (10), pp. 797799, 15 November 1979.Google Scholar
8. Koob, P. W., Fraundoft, G. K., and Craven, R., J. Electrochem. Soc. 133, p. 806 (1986).Google Scholar
9. Patel, J. R., Jackson, K. A., and Reiss, H., J. Appl. Phys. 48 (12), pp. 52795288, December 1977.Google Scholar
10. Buczkowski, A., Shimura, F., and Rozgonyi, G. A., Extended Abstracts, Electrochem. Soc., pp. 478479, October 1993.Google Scholar
11. Hasebe, M., Takeoka, Y., Shinoyama, S., and Naito, S., Defect Control in Semiconductors, 1, p. 157, September 1989.Google Scholar
12. Hourai, M., Sadamitsu, S., Murakami, K., Shigematsu, T., and Fujino, N., Defect Control in Semiconductors, 1, p. 305, September 1989.Google Scholar