Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T06:56:43.980Z Has data issue: false hasContentIssue false

Role of Material Structure on Molecular Diffusion of Hydrogen in a-Si:C:H Films

Published online by Cambridge University Press:  15 February 2011

E. H. C. Ullersma
Affiliation:
Debye Institute, Department of Atomic and Interface Physics, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the, Netherlands
D. K. Inia
Affiliation:
Debye Institute, Department of Atomic and Interface Physics, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the, Netherlands
F.H.P.M. Habraken
Affiliation:
Debye Institute, Department of Atomic and Interface Physics, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the, Netherlands
W.G.J.H.M. Van Sark
Affiliation:
Debye Institute, Department of Atomic and Interface Physics, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the, Netherlands
W. F. Van Der Weg
Affiliation:
Debye Institute, Department of Atomic and Interface Physics, Utrecht University, P.O. Box 80.000, NL-3508 TA Utrecht, the, Netherlands
K. T. Westerduin
Affiliation:
Delft University of Technology, Department of Reactor Physics, Mekelweg 15, NL-2629 BJ Delft, the, Netherlands
A. Van Veen
Affiliation:
Delft University of Technology, Department of Reactor Physics, Mekelweg 15, NL-2629 BJ Delft, the, Netherlands
Get access

Abstract

We used Fourier Transform Infra-Red (FTIR) analysis of bi-layers of plasma-grown hy-drogenated amorphous silicon-carbide films to investigate the role of the material structure in the hydrogen diffusion process. In the bi-layers one layer was deposited using CH4/SiH4 and in the other layer CD4/SiD4 was applied. The carbon concentration was 20 at.%. In previous work we showed, using Elastic Recoil Detection (ERD) and Thermal Desorption Spectrometry (TDS), that the hydrogen moves molecular through these films in the temperature range 325 < T < 450 °C [1]. Using FTIR we obtained information about the number of Si-H and Si-D bonds and their change upon annealing. The FTIR data indicate a structural change during annealing. A comparison with the TDS spectra led us to the conclusion that at higher temperatures the out-diffusion of hydrogen stops because of the hindrance of the molecular transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ullersma, E. H. C., Inia, D. K., Habraken, F. H. P. M., van Sark, W. G. J. H. M., van der Weg, W. F., Westerduin, K. T., and van Veen, A. (submitted for publication).Google Scholar
2. Tawada, Y., Okamoto, H., and Hamakawa, Y., Appl. Phys. Lett. 39, 237 (1981).Google Scholar
3. Sakai, H., Yoshida, T., Fujikake, S., and Ichikawa, Y., in Amorphous Silicon Technology - 1989, edited by Madan, A., Thompson, M. J., Taylor, P. C., Hamakawa, Y., and LeComber, P. G. (Material Research Society, Pittsburgh, 1989), Vol. 149, pp. 477482.Google Scholar
4. Shimizu, I., Komatsu, T., Saito, T., and Inoue, E., J. Non-Cryst. Solids 35 & 36, 773 (1980).Google Scholar
5. Oda, S., Saito, K., Tomita, H., Shimizu, I., and Inoue, E., J. Appl. Phys. 52 (1981).Google Scholar
6. Sussmann, R. S. and Ogden, R., Philos. Mag. B 44, 137 (1981).Google Scholar
7. Beyer, W., Physica B 170, 105 (1991).Google Scholar
8. Denisse, C. M. M., Troost, K. Z., Habraken, F. H. P. M., and van der Weg, W. F., J. Appl. Phys. 60, 2543 (1986).Google Scholar
9. Stap, C. A. M., Meiling, H., Landweer, G., Bezemer, J., and van der Weg, W. F., in Proceedings of the Ninth E.C. Photovoltaic Solar Energy Conference, F.R.G., 1989, edited by Palz, W., Wrixon, G. T., and Helm, P. (Kluwer Academic, Dordrecht, the Netherlands, 1989), p. 74.Google Scholar
10. Arnold Bik, W. M. and Habraken, F. H. P. M., Rep. Prog. Phys. 56, 859 (1993).Google Scholar
11. Beyer, W., Wagner, H., and Finger, F., J. Non-Cryst. Solids 77 & 78, 857 (1985).Google Scholar
12. Lucovsky, G., J. Non-Cryst. Solids 76, 173 (1985).Google Scholar