Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-09-30T08:58:53.042Z Has data issue: false hasContentIssue false

Room-Temperature CW Operation of SQW Lasers on Si Grown withAiGaAs/AlGaP Intermediate Layers by MoCVD

Published online by Cambridge University Press:  21 February 2011

T. Egawa
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Y. Hayashi
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. George
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. Soga
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. Jimbo
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
M. Umeno
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Get access

Abstract

The heterointerfaces of single quantum wells (SQWs) and the characteristicsof SQW lasers on Si substrates grown with Al0.5 Ga0 5As/Al0.55Ga0.45P intermediate layers(AlGaAs/AlGaP ILs) entirely by MOCVD are reported. The surface morphologyand the heterointerfaces of SQWs grown on Si substrates with theAlGaAs/AlGaP ILs are smoother than those of the two-step-grown sample. Thetwo-dimensional growth of the AlGaAs/AlGaP ILs on a Si substrate contributesto obtain the smooth heterointerface. The excellent lasing characteristicsare obtained by the AlGaAs/AlGaP ILs, which are caused by the smoothheterointerfaces. The lasers grown with the AlGaAs/AlGaP ILs show theaveraged threshold current density of 1.83 kA/cm2 and theaveraged differential quantum efficiency of 51.9 % under cw condition atroom temperature.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Deppe, D. G., Hall, D. C., Holonyak, N. Jr., Matyi, R. J., Shichijo, H. and Epler, J. E., Appl. Phys. Lett., 53, 874 (1988).CrossRefGoogle Scholar
2. Choi, H. K., Wang, C. A. and Fan, J. C. C., J. Appl. Phys., 68, 1916 (1990).Google Scholar
3. Egawa, T., Tada, H., Kobayashi, Y., Soga, T., Jimbo, T. and Umeno, M., Appl. Phys. Lett., 57, 1179 (1990).Google Scholar
4. Egawa, T., Kobayashi, Y., Hayashi, Y., Soga, T., Jimbo, T. and Umeno, M., Jpn. J. Appl. Phys., 29, L1133 (1990).CrossRefGoogle Scholar
5. Egawa, T., Nozaki, S., Noto, N., Soga, T., Jimbo, T. and Umeno, M., J. Appl. Phys., 67, 6908 (1990).Google Scholar
6. Onozawa, S., Ueda, T. and Akiyama, M., J. Crystal Growth, 93, 443 (1988).CrossRefGoogle Scholar
7. Noto, N., Nozaki, S., Egawa, T., Soga, T., Jimbo, T. and Umeno, M., Inst. Phys. Conf. Ser. No. 106, 117 (1989).Google Scholar
8. Kressel, H. and Butler, J. K., Semiconductor Lasers and Heterojunction LEDs, (Academic, New York, 1977), p. 101.Google Scholar
9. Tsang, W. T., IEEE J. Quantum Electron., QE-20, 1119 (1984).Google Scholar