Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T07:06:50.051Z Has data issue: false hasContentIssue false

Room-Temperature CW Operation of SQW Lasers on Si Grown with AiGaAs/AlGaP Intermediate Layers by MoCVD

Published online by Cambridge University Press:  21 February 2011

T. Egawa
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Y. Hayashi
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. George
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. Soga
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. Jimbo
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
M. Umeno
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Get access

Abstract

The heterointerfaces of single quantum wells (SQWs) and the characteristics of SQW lasers on Si substrates grown with Al0.5 Ga0 5As/Al0.55Ga0.45P intermediate layers (AlGaAs/AlGaP ILs) entirely by MOCVD are reported. The surface morphology and the heterointerfaces of SQWs grown on Si substrates with the AlGaAs/AlGaP ILs are smoother than those of the two-step-grown sample. The two-dimensional growth of the AlGaAs/AlGaP ILs on a Si substrate contributes to obtain the smooth heterointerface. The excellent lasing characteristics are obtained by the AlGaAs/AlGaP ILs, which are caused by the smooth heterointerfaces. The lasers grown with the AlGaAs/AlGaP ILs show the averaged threshold current density of 1.83 kA/cm2 and the averaged differential quantum efficiency of 51.9 % under cw condition at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deppe, D. G., Hall, D. C., Holonyak, N. Jr., Matyi, R. J., Shichijo, H. and Epler, J. E., Appl. Phys. Lett., 53, 874 (1988).CrossRefGoogle Scholar
2. Choi, H. K., Wang, C. A. and Fan, J. C. C., J. Appl. Phys., 68, 1916 (1990).Google Scholar
3. Egawa, T., Tada, H., Kobayashi, Y., Soga, T., Jimbo, T. and Umeno, M., Appl. Phys. Lett., 57, 1179 (1990).Google Scholar
4. Egawa, T., Kobayashi, Y., Hayashi, Y., Soga, T., Jimbo, T. and Umeno, M., Jpn. J. Appl. Phys., 29, L1133 (1990).CrossRefGoogle Scholar
5. Egawa, T., Nozaki, S., Noto, N., Soga, T., Jimbo, T. and Umeno, M., J. Appl. Phys., 67, 6908 (1990).Google Scholar
6. Onozawa, S., Ueda, T. and Akiyama, M., J. Crystal Growth, 93, 443 (1988).CrossRefGoogle Scholar
7. Noto, N., Nozaki, S., Egawa, T., Soga, T., Jimbo, T. and Umeno, M., Inst. Phys. Conf. Ser. No. 106, 117 (1989).Google Scholar
8. Kressel, H. and Butler, J. K., Semiconductor Lasers and Heterojunction LEDs, (Academic, New York, 1977), p. 101.Google Scholar
9. Tsang, W. T., IEEE J. Quantum Electron., QE-20, 1119 (1984).Google Scholar