Skip to main content

Routes to Control the Chemical Potential and to Modulate the Reactivity of Nanodiamond Surfaces

  • Giacomo Reina (a1), Silvia Orlanducci (a1), Stefano Gay (a1), Angelo Gismondi (a2), Teresa Lavecchia (a1), Maria Letizia Terranova (a1) and Emanuela Tamburri (a1)...

The use of detonation nanodiamond (DND) for drug delivery and cell-imaging is grounded on its chemical functionalization, and the key task to be addressed is the capability to simplify the process steps, to reduce the process times and to maximize the drug/ligand uptake. The idea underlying the present research is to modulate the loading capability of DND by controlled modification of the surface organic groups. To this aim the DND samples are treated either by wet chemistry, using medium-strong reducing agents, or by tunable H-plasmas produced in a custom-designed MW-RF reactor. The affinity of the treated DND surfaces for drugs has been probed by conjugating the ciproten (5,7- dimethoxycoumarin), a natural antioxidant molecule, and by testing in vitro the feasibility to use coumarin vehicled by nanodiamond (C@DND) as chemioterapeutic drug. The methodologies developed to modify the DND surfaces are offering practical solutions to the still open problems related to DND-based systems for drug delivery applications.

Hide All
1 Peristyy, A. A., Fedyanina, O. N., Paull, B., & Nesterenko, P. N. (2014). Diamond based adsorbents and their application in chromatography. Journal of Chromatography A, 1357, 6886.
2 Turner, S., Lebedev, O. I., Shenderova, O., Vlasov, I. I., Verbeeck, J., & Van Tendeloo, G. (2009). Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Advanced functional materials, 19(13), 2116.
3 Yeap, W. S., Chen, S., & Loh, K. P. (2008). Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir, 25(1), 185.
4 Xu, K., & Xue, Q. (2004). A new method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method. Physics of the Solid State, 46(4), 649.
5 Larionova, I., Kuznetsov, V., Frolov, A., Shenderova, O., Moseenkov, S., & Mazov, I. (2006). Properties of individual fractions of detonation nanodiamond. Diamond and related materials, 15(11), 1804.
6 Batsanov, S. S., Osavchuk, A. N., Naumov, S. P., Efimov, A. E., Mendis, B. G., Apperley, D. C., & Batsanov, A. S. (2014). Synthesis and Properties of Hydrogen‐Free Detonation Diamond. Propellants, Explosives, Pyrotechnics.
7 Greiner, N. R., Phillips, D. S., Johnson, J. D., & Volk, F. (1988). Diamonds in detonation soot. Nature 333, 440.
8 Shenderova, O., McGuire, G., & Gogotsi, Y. (2006). Nanomaterials Handbook. CRC Taylor and Francis Group, Boca Raton, 203.
9 Barnard, A. S. (2009). Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst, 134(9), 1751.
10 Kaur, R., & Badea, I. (2013). Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. International journal of nanomedicine, 8, 203.
11 Mochalin, V. N., Shenderova, O., Ho, D., & Gogotsi, Y. (2012). The properties and applications of nanodiamonds. Nature Nanotechnology, 7(1), 11.
12 Shenderova, O., Petrov, I., Walsh, J., Grichko, V., Grishko, V., Tyler, T., & Cunningham, G. (2006). Modification of detonation nanodiamonds by heat treatment in air. Diamond and related materials, 15(11), 1799.
13 Xu, X., Yu, Z., Zhu, Y., & Wang, B. (2005). Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond. Journal of Solid State Chemistry, 178(3), 688.
14 Tamburri, E., Guglielmotti, V., Matassa, R., Orlanducci, S., Gay, S., Reina, G., Terranova, M. L., Passeri, D. & Rossi, M. (2014). Detonation nanodiamonds tailor the structural order of PEDOT chains in conductive coating layers of hybrid nanoparticles. Journal of Materials Chemistry C, 2(19), 3703.
15 Tamburri, E., Orlanducci, S., Guglielmotti, V., Reina, G., Rossi, M., & Terranova, M. L. (2011). Engineering detonation nanodiamond–Polyaniline composites by electrochemical routes: Structural features and functional characterizations. Polymer, 52(22), 5001.
16 Rape, A., Liu, X., Kulkarni, A., & Singh, J. (2013). Alloy development for highly conductive thermal management materials using copper-diamond composites fabricated by field assisted sintering technology. Journal of Materials Science, 48(3), 1262.
17 Kovalenko, I., Bucknall, D. G., & Yushin, G. (2010). Detonation Nanodiamond and Onion-Like-Carbon-Embedded Polyaniline for Supercapacitors. Advanced Functional Materials, 20(22), 3979.
18 Shugalei, I. V., Voznyakovskii, A. P., Garabadzhiu, A. V., Tselinskii, I. V., Sudarikov, A. M., & Ilyushin, M. A. (2013). Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russian Journal of General Chemistry, 83(5), 851.
19 Welch, J. O. (2014). Nanodiamonds: From biology to engineering (Doctoral dissertation, UCL (University College London)).
20 Krueger, A., Stegk, J., Liang, Y., Lu, L., & Jarre, G. (2008). Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir, 24(8), 4200.
21 Yeap, W. S., Tan, Y. Y., & Loh, K. P. (2008). Using detonation nanodiamond for the specific capture of glycoproteins. Analytical chemistry, 80(12), 4659.
22 Reina, G., Orlanducci, S., Cairone, C., Tamburri, E., Lenti, S., Cianchetta, Rossi M. & Terranova, M. L. (2015). Rhodamine/Nanodiamond as a System Model for Drug Carrier. Journal of Nanoscience and Nanotechnology, 15(2), 1022.
23 Orlanducci, S., Toschi, F., Guglielmotti, V., Tamburri, E., Terranova, M. L., Rossi, M. (2011). Detonation nanodiamond as building blocks for fabrication of densely packed arrays of diamond nanowhiskers. Nanoscience and Nanotechnology Letters, 3, 83.
24 Gismondi, A., Reina, G., Orlanducci, S., Mizzoni, F., Gay, S., Terranova, M. L., & Canini, A. (2015). Nanodiamonds coupled with plant bioactive metabolites: A nanotech approach for cancer therapy. Biomaterials, 38, 22.
25 Tabolacci, C., Lentini, A., Mattioli, P., Provenzano, B., Oliverio, S., Carlomosti, F., Beninati, S. (2010). Antitumor properties of aloe-emodin and induction of transglutaminase 2 activity in B16–F10 melanoma cells. Life sciences, 87(9), 316.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed