Skip to main content
×
Home

Scattering Studies of the Isolated Red Blood Cell Skeleton, a Biological Two-Dimensional Polymer

  • K. Svoboda (a1) (a2) (a3), C.F. Schmidt (a1) (a3), N. Lei (a4), C.R. Safinya (a4), S.M. Block (a2) (a3) and D. Branton (a2)...
Abstract
Abstract

We studied the conformation of the membrane skeleton of human red blood cells (RBC) after detergent extraction of RBC ghosts, using video microscopy, light scattering, and synchrotronbased small angle X-ray scattering (SAXS). RBC membrane skeletons are two-dimensionally connected, triangulated networks of flexible, polyionic proteins. Immediately after extraction, the skeletons exhibited large-scale thermal undulations and deformed strongly in weak shear flow. Screening of electrostatic repulsion by immersion in high ionic strength buffer led to shrinkage, while the shell-like conformations and the flexibility of the skeletons were preserved. Under high ionic strength conditions (1 M monovalent salt), the static structure factor, S(q), showed two power law regimes S(q) ∝ q −α, with α <≈ 2.0 in the range of wave vectors 4×10−4 Å−1 < g < 8×10−4 Å−1, and α = 2.3 ± 0.1 in the range of wave vectors 8×10−4 Å−1 < q < l×10−1 Å−1. The same power law behavior was observed in low ionic strength buffer (25 mM salt) for q < 2×10−3 Å−1. This result is not consistent with the occurence of a crumpling transition during skeleton shrinkage. The observed form of the static structure factor, with a transition between two regimes with different power law exponents, presents evidence for the theoretically predicted flat phase of 2D-polymers.

Copyright
References
Hide All
[1]Helfrich W., Z. Naturforsch. 33a, 305 (1978).
[2]Parsegian A., Fuller N., and Rand R. P., Proc. Natl. Acad. Sci. 76, 2750 (1979); J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, Orlando, 1985); J. Mahanty and B. W. Ninham, Dispersion Forces (London, 1976).
[3]Safinya C. R., Roux D., Smith G. S., Sinha S. K., Dimon P., Clark N. A., and Bellocq A. M., Phys. Rev. Lett. 57, 2718 (1986); C. R. Safinya, E. B. Sirota, D. Roux, and G. S. Smith, Phys. Rev. Lett. 62, 1134 (1989); D. Roux, C. R. Safinya, and F. Nallet, in Modern Amphiphilic Physics, edited by Ben-Shaul, W. Gelbart, and D. Roux (Springer), in press.
[4]Safinya C. R., in Phase Transitions in Soft Condensed Matter, edited by Riste T. and Sherrington D., Nato ASI series, B, 211, 249 (1989).
[5]Basserau P., Marignan J., and Porte G., J. Phys. (Paris) 48, 673 (1987).
[6]Nelson D. R. and Peliti L., J. Phys. (Paris) 48, 1085 (1987); J. A. Aronovitz and T. C. Lubensky, Phys. Rev. Let. 60, 2634 (1988); for a broader discussion see: Statistical Mechanics of Membranes and Surfaces, edited by D. R. Nelson, T. Piran, and S. Weinberg (World Scientific, Singapore, 1989).
[7]Plischke M. and Boal D., Phys. Rev. A 38, 4943 (1988); F. F. Abraham, W. E. Rudge, and M. Plischke, Phys. Rev. Let. 62, 1757 (1989); R. Lipowsky and M. Girardet, Phys. Rev. Let. 65, 2893 (1990); F. F. Abraham, Phys. Rev. Let. 67, 1669 (1991); R. Lipowsky and M. Girardet, Phys. Rev. Let. 67, 1670 (1991).
[8]Abraham F. F. and Nelson D. R., Science 249, 393 (1990); J. Physique 51, 2653 (1990).
[9]Kantor Y., Kardar M., and Nelson D. R., Phys. Rev. Let. 57, 791 (1986).
[10]Hwa T., Kokufuta E., and Tanaka T., Phys. Rev. A 44, 2235 (1991).
[11]Seung H. S. and Nelson D. R., Phys. Rev. A 38, 1005 (1988).
[12]Smith G. S., Safinya C. R., Roux D., and Clark N. A., Mol. Cryst. Liq. Cryst. 144, 235 (1987); G. S. Smith, E. B. Sirota, C. R. Safinya, and N. A. Clark, Phys. Rev. Lett. 60, 813 (1988); E. B. Sirota, G. S. Smith, C. R. Safinya, R. J. Plano, and N. A. Clark, Science 242, 1406 (1988); G. S. Smith, E. B. Sirota, C. R. Safinya, R. J. Plano, and N. A. Clark, J. Chem. Phys. 92, 4519 (1990).
[13]Bennett V., Physiol. Rev. 70, 1029 (1990); A. Elgsaeter, A. Stokke, A. Mikkelsen, and D. Branton, Science 234, 1217 (1986).
[14]Stokke B. J., Mikkelsen A., and Elgsaeter A., Biochim. Biophys. Acta 816, 102 (1985).
[15]Sandvold M. L., Mikkelsen A., and Elgsaeter A., Acta Chem. Scand. 43, 783 (1989).
[16]Elgsaeter A., Biochim. Biophys. Acta 536, 235 (1978).
[17]Block S. M., Fahrner K. A., and Berg H. C., J. Bacteriology 173, 933 (1991).
[18]Svoboda K., Schmidt C. F., Branton D., and Block S. M., to be published (1992).
[19]Block S. M., in Noninvasive Techniques in Cell Biology, edited by Foskett J. K. and Grinstein S. (Wiley/Liss, New York, 1990), p. 375.
[20]Berg H. C. and Block S. M., J. Gen. Microbiol. 130, 2915 (1984).
[21]Dodge J. T., Mitchell C., and Hanahan D. J., Arch. Biochem. Biophys. 100, (1963); M. P. Sheetz and D. Sawyer, J. Supramol. Struct. 8, 399 (1978); B. W. Shen, R. Josephs, and T. L. Steck, J. Cell Biol. 102, 997 (1984).
[22]Ungewickell E. and Gratzer W., Eur. J. Biochem. 88, 379 (1978).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 44 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.