Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T06:30:22.957Z Has data issue: false hasContentIssue false

Selective Growth Of Decagonal Ai-Co Thin Films By Reactive Diffusion: Kinetic And Thermodynamic Aspects

Published online by Cambridge University Press:  10 February 2011

E. Emeric
Affiliation:
Centre de Thermodynamique et Microcalorim~trie (UPR - CNRS), 13347-Marseille, F., claire@ctm.cnrs-mrs.fr
C. Bergman
Affiliation:
Centre de Thermodynamique et Microcalorim~trie (UPR - CNRS), 13347-Marseille, F., claire@ctm.cnrs-mrs.fr
G. Clugnet
Affiliation:
Laboratoire de Métallurgie (UMR-CNRS), Fac. des Sciences St Jér^me, 13397- Marseille, F.
P. Gas
Affiliation:
Laboratoire de Métallurgie (UMR-CNRS), Fac. des Sciences St Jér^me, 13397- Marseille, F.
Get access

Abstract

We report on the formation by reactive diffusion of a pure decagonal quasicrystalline film in Al/Co bilayer and multilayer structures of overall composition Al13CO4. We show that this method is highly selective since several stable phases which exist around this composition are never observed. The quasicrystal is not the first reaction product but is obtained as a second reaction step by a peritectoid reaction between Al9Co2 and the remaining cobalt. DSC analysis allows the determination of both the enthalpy of formation of the decagonal quasicrystal (ΔHf = -31500 ± 2000 J/g-atom) and its activation energy of growth (2.6 ± 0.5 eV).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dubois, J. M., Pour la Science, 226, 52 (1996).Google Scholar
2. Besser, M. F. and Eisenhammer, T., Mater. Res. Soc. Bull., 22 (11), 5963 (1997).Google Scholar
3. Tsai, A. P., Mater. Res. Soc. Bull., 22 (11), 4347 (1997).Google Scholar
4. Faudot, F., Ann. Chim. Fr., 18, 445 (1993)Google Scholar
5. Godecke, T. and Luck, R., Z. Metallkd., 86, 109 (1995)Google Scholar
6. Scheffer, M., Godecke, T., Luck, R., Ritsch, S. and Beeli, C., Z. Metallkd., 89, 270 (1998)Google Scholar
7. Emeric, E., Bergman, C., Clugnet, G., Gas, P. and Audier, M., Philos. Mag. Lett., 78, 77, (1998)Google Scholar
8. Michaelsen, C., Barmak, K. and Weihs, T. P., J. Phys. D: Appl. Phys., 30, 3167 (1997)Google Scholar
9. Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M. and Kelley, K. K., Selected Values of the Thermodynamic Properties of Binary Alloys, (American Society for Metals, 1973) p. 143.Google Scholar
10. Schroers, J., Holland-Moritz, D., Herlach, D. M., Grushko, B. and Urban, K., Mat. Sci. Eng., A 226–228, 990 (1997)Google Scholar
11. Kissinger, H. E., Anal. Chem., 29, 1702 (1957)Google Scholar
12. d'Heurle, F. M., J. Mater. Res. 3, 167 (1988)Google Scholar
13. Grushko, B., Wittenberg, R., Bickmann, K. and Freiburg, C., J. Alloys Comp., 233, 279 (1996)Google Scholar
14. Godecke, T. and Ellner, M., Metallkde, Z., 87, 11 (1996)Google Scholar
15. Gerl, M. and Guilmin, P., Solid State Phenomena, 3–4, 215 (1988)Google Scholar
16. Christian, J. W., The Theory of Transformation in Metals and Alloys, (Pergamon, Oxford, 1975).Google Scholar