Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T20:55:10.883Z Has data issue: false hasContentIssue false

Selective Oxidation to Form Dielectric Apertures for Low Threshold VCSELs and Microcavity Spontaneous Light Emitters

Published online by Cambridge University Press:  10 February 2011

D. G. Deppe
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, deppe@mail.utexas.edu
D. L. Huffaker
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, deppe@mail.utexas.edu
L. A. Graham
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, deppe@mail.utexas.edu
Z. Zou
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, deppe@mail.utexas.edu
S. Csutak
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, deppe@mail.utexas.edu
Get access

Abstract

Selective oxidation of AlAs (or AlGaAs) can be used to form buried, low refractive index apertures within high Q Fabry-Perot microcavities. These apertures provide electrical and optical confinement, and for vertical-cavity surface-emitting lasers (VCSELs) have resulted in ultra-low threshold room temperature lasing with threshold currents under 25 μA. When used with quantum dot light emitters, the oxide-apertured microcavity can also be used to control the spontaneous lifetime. We describe the microcavity fabrication based on high Q Fabry-Perot microcavities and selective oxidation, and design and cavity Q constraints for apertured microcavities for quantum well and quantum dot VCSELs and microcavity LEDs. Threshold current densities of quantum well VCSELs are as low as 98 A/cm2, while ground state lasing is also obtained for quantum dot VCSELs. Our initial experiments on microcavities with very small apertures and quantum dot emitters demonstrate up to a factor of 2.3 increase in the spontaneous emission rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huffaker, D.L., Deppe, D.G., Kumar, K., and Rogers, T.J., Appl. Phys. Lett. 65 97 (1994).Google Scholar
2. Lear, K.L., Choquette, K.D., Schneider, R.P., Jr., Kilcoyne, S.P., and Geib, K.M., Electron. Lett. 31 208 (1995).Google Scholar
3. Jager, R., Grabherr, M., Jung, C., Michalzik, R., Reiner, G., Wiegl, B., and Ebeling, K., Electron. Lett. 33, 330 (1997).Google Scholar
4. Deppe, D.G., Huffaker, D.L., Oh, Q.-H., Deng, H., and Deng, Q., IEEE J. Sel. Top. Quant. Electron. 3 893 (1997).Google Scholar
5. Yang, G.M., MacDougal, M.H., and Dapkus, P.D., Electron. Lett. 31 560 (1995).Google Scholar
6. Huffaker, D.L. and Deppe, D.G., Appl. Phys. Lett. 71, 1449 (1997).Google Scholar
7. Huffaker, D.L., Park, G., Zou, Z., Shchekin, O.B., and Deppe, D.G., Appl. Phys. Lett. 73, 2564 (1998).Google Scholar
8. Drexhage, K.H. in Progress in Optics, edited by E., Wolf (North-Holland, Amsterdam, 1974), Vol. XII, Chap. IV.Google Scholar
9. Deppe, D.G., Campbell, J.C., Kuchibhotla, R., Rogers, T.J., and Streetman, B.G., Electron. Lett. 26, 1665 (1990).Google Scholar
10. Rogers, T.J., Deppe, D.G., and Streetman, B.G., Appl. Phys. Lett. 57, 1858 (1990).Google Scholar
11. Yokoyama, H., Nishi, K., Anan, T., Yamada, H., Brorson, S.D., and Ippen, E., Appl. Phys. Lett. 57, 2814 (1990).Google Scholar
12. Ochi, N., Shiotani, T., Yamanishi, M., Honda, Y., and Suemune, I., Appl. Phys. Lett. 58, 2735 (1991).Google Scholar
13. Yamauchi, T., Arakawa, Y., and Nishioka, M., Appl. Phys. Lett. 59, 2339 (1991).Google Scholar
14. Huffaker, D.L., Lei, C., Deppe, D.G., Pinzone, C.J., Neff, J.G., and Dupuis, R.D., Appl. Phys. Lett. 60, 3203 (1992).Google Scholar
15. Purcell, E.M., Phys. Rev. 69 681 (1946).Google Scholar
16. Zou, Z., Shchekin, O.B., Park, G., Huffaker, D.L., and Deppe, D.G., IEEE Phot. Tech. Lett. 10 1673 (1998).Google Scholar
17. Graham, L.A., Huffaker, D.L., and Deppe, D.G., Appl. Phys. Lett. 74, (26 April, 199).Google Scholar
18. Gerard, J.M., Sermage, B., Gayral, B., Legrand, B., Costard, E., and Thierry-Mieg, V., Phys. Rev. Lett. 81, 1110 (1998).Google Scholar
19. Deppe, D.G., Huffaker, D.L., Shin, J., and Deng, Q., IEEE Phot. Tech. Lett. 7, 965 (1995).Google Scholar
20. Huffaker, D.L. and Deppe, D.G., Appl. Phys. Lett. 67, 2594 (1995).Google Scholar
21. Deng, Q. and Deppe, D.G., Opt. Express 2, 157 (1998).Google Scholar
22. Hadley, G.R., Opt. Lett. 20, 1483 (1995).Google Scholar
23. Deppe, D.G., Oh, T.-H., and Huffaker, D.L., IEEE Phot. Tech. Lett. 9, 713 (1997).Google Scholar
24. Lin, C.C., Deppe, D.G., and Lei, C., IEEE J. Quant. Electron. 30, 2304 (1994).Google Scholar
25. Ujihara, K., Jpn. J. Appl. Phys. 30, L901 (1991).Google Scholar
26. Deng, Q. and Deppe, D.G., Phys. Rev. A 53, 1036 (1996).Google Scholar
27. Dallesasse, J.M., Holonyak, N., Jr., Sugg, A.R., Richard, T.A., and EI-Zein, N., Appl. Phys. Lett. 57, 2844 (1990).Google Scholar
28. Maranowski, S.A., Sugg, A.R., Chen, E.I., and Holonyak, N., Jr., Appl. Phys. Lett. 63, 1660 (1993).Google Scholar
29. Wang, G., Fafard, S., Leonard, D., Bowers, J.E., Merz, J.L., and Petroff, P.M., Appl. Phys. Lett. 64, 2815 (1994).Google Scholar
30. Kurtenbach, A., Ruhle, W.W., and Eberl, K., Solid State Comm. 96, 265 (1995).Google Scholar