Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T12:48:33.797Z Has data issue: false hasContentIssue false

Self-Assembly of Metal Nanoclusters in Block Co-Polymers

Published online by Cambridge University Press:  15 March 2011

Erica H. Tadd
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
John Bradley
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Eugene P. Goldberg
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Rina Tannenbaum
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Get access

Abstract

This paper describes the formation of cobalt and iron metal nanoclusters in various polymeric domains. The size of the particles, their size distribution and their geometry is controlled by the extent of the interfacial interactions between the polymeric phase and the growing metal fragments. Iron oxide particles are shown to exhibit various geometries as a function of the polymer medium and the temperature at which they are formed. The selective phase separation and particle confinement of cobalt clusters in the presence of PS25300-b-PMMA25900 block co-polymer was achieved due to the different reactivities of the functional groups in the blocks towards the metal fragments. Transmission electron micrographs showed that cobalt clusters aggregated primarily in the poly(methyl methacrylate) block, while no cobalt nanoclusters were observed in the polystyrene block, thus creating a patterned distribution that coincided with the morphology of the block copolymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Addadi, L.; Weiner, S. Angew. Chem. Int. Ed. Engl. 1992, 31, 169.Google Scholar
2. Belcher, A. M.; Hansma, P. K.; Stucky, G. D.; Morse, D. E. Acta Mater. 1998, 46, 733736.Google Scholar
3. McGrath, K. M. Adv. Mater. 2001, 13, 989.Google Scholar
4. Pileni, M.-P.; Ninham, B. W.; Gulik-Krzywicki, T.; Tanori, J.; Lisiecki, I.; Filankembo, A. Adv. Mater. 1999, 11, 1358.Google Scholar
5. Alivisatos, A. P.; Barbara, P. F.; Castleman, A. W.; Chang, J.; Dixon, D. A.; Klein, M. L.; McLendon, G. L.; Miller, J. S.; Ratner, M. A.; Rossky, P. J.; Stupp, S. I.; Thompson, M. E. Adv. Mater. 1998, 10 (16), 12971336.Google Scholar
6. Stupp, S. I.; Keser, M.; Tew, G. N. Polymer 1998, 39(19), 45054508.Google Scholar
7. Stupp, S. I.; Pralle, M. U.; Tew, G. N.; Li, L.; Sayar, M.; Zubarev, E. R. MRS Bull. 2000, 25(4), 4248.Google Scholar
8. Grier, D. G. MRS Bull. 1998, 23(10), 2123.Google Scholar
9. Tannenbaum, R.; Goldberg, E. P.; Flenniken, C. L.Metal-containing polymeric systems”, Eds. Carraher, C., Pittman, C. U. and Sheats, J., Plenum Press, New York 1985, p. 303340.Google Scholar
10. Tannenbaum, R.; Flenniken, C. L.; Goldberg, E.P J. Polym. Sci. Phys. Ed. 1990, 28, 2421.Google Scholar
11. Klaubunde, K. J.; Tanaka, Y. J. Molec. Catal, 1983, 21, 57.Google Scholar
12. Kanai, H.; Tan, B. J.; Klaubunde, K. J. Langmuir 1986, 2(6), 760.Google Scholar
13. Kernizan, C. F.; Klabunde, K. J.; Sorensen, C. M.; Hadjipanayis, G. C. J. Appl. Phys. 1990, 67(9), 5897.Google Scholar
14. Tannenbaum, R. Langmuir 1997, 13(19), 5056, and pertinent references therein.Google Scholar
15. Rotstein, H. G.; Novick-Cohen, A.; Tannenbaum, R. J. Stat. Phys. 1998, 90(1/2), 119.Google Scholar
16. Rotstein, H. G.; Novick-Cohen, A.; Tannenbaum, R. J. Phys. Chem. B 2001, to appear.Google Scholar
17. Smith, B. I.; Schäffer, T. E; Viani, M.; Thompson, J. B.; Frederick, N. A.; Kindt, J.; Belcher, A.; Stucky, G. D.; Morse, D. E.; Hansma, P. K. Nature 1999, 399, 761763.Google Scholar
18. Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M., Nature 2000, 405, 665668.Google Scholar
19. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Science 1996, 272, 19241925.Google Scholar
20. Petroski, J. M.; Wang, Z. L.; Green, T. C.; El-Sayed, M. A. J. Phys. Chem. B 1998, 102, 33163320.Google Scholar
21. Bradley, J. S.; Tesche, B.; Busser, W.; Maase, M.; Reetz, M. T. J. Am. Chem. Soc. 2000, 122, 46314636.Google Scholar
22. Morkved, T. L.; Wiltzius, P.; Jaeger, H. M.; Grier, D. G.; Witten, T. A. Appl. Phys. Lett. 1994, 64(4), 422424.Google Scholar
23. Caruso, F.; Möhwald, H. Langmuir 1999, 15(23), 82768281.Google Scholar
24. Clay, R. T.; Cohen, R. E. Supramolecular Science 1995, 2, 183191.Google Scholar
25. Bates, F. S.; Fredrickson, G. H. Ann. Rev. Phys. Chem. 1990, 41, 525557.Google Scholar
26. Hashimoto, T.; Harada, M.; Sakamoto, N. Macromolecules 1999, 32, 68676870.Google Scholar
27. Spatz, J. P.; Mössmer, S.; Hartmann, C.; Möller, M.; Herzog, T.; Krieger, M.; Boyen, H. -G.; Ziemann, P.; Kabius, B. Langmuir 2000, 16, 407415.Google Scholar
25. Li, R.R., Dapkus, P.D., Thompson, M.E., Jwong, W.G., Harrison, C., Chaikin, P.M., Register, R.A., Adamson, D.H. Applied Physics Letters 2000, 76 (13), 16891691.Google Scholar
26. Bronstein, L.M., Valetsky, P.M., Solodovnikov, S.P., Seregina, M.V., Register, R.A. Macromol. Symp. 1996, 106, 7386.Google Scholar
27. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25(1), 422428.Google Scholar
28. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1991, 24(23), 61826188.Google Scholar
29. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25(10), 26452650.Google Scholar
30. Whitmore, M. D.; Noolandi, J. Polym. Eng. Sci. 1985, 25 (17), 11201121.Google Scholar
31. Pepin, M. P.; Whitmore, M. D. Macromolecules 2000, 33(23), 86448653.Google Scholar
32. Jeon, K. -J.; Roe, R. -J. Macromolecules 1994, 27(9), 24392447.Google Scholar
33. Roe, R. -J. Polym. Eng. Sci. 1985, 25(17), 11031109.Google Scholar
34. Tadd, E. H.; Bradley, J.; Tannenbaum, R. J. Phys. Chem. B 2001, 105, 0000–0000 (to appear).Google Scholar