Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T17:27:33.841Z Has data issue: false hasContentIssue false

Si1−xGex Oxidation by Plasma Assisted Processing: Oxide Uniformity and Electrical Properties

Published online by Cambridge University Press:  10 February 2011

T. Busani
Affiliation:
France Telecom-CNET, BP 98, 38243 Meylan, France
H. Plantier
Affiliation:
LEMD, CNRS-UJF, UMR C5517, BP 166, 38042 Grenoble Cedex
R. A. B. Devine
Affiliation:
France Telecom-CNET, BP 98, 38243 Meylan, France
C. Hernandez
Affiliation:
France Telecom-CNET, BP 98, 38243 Meylan, France
Y. Campidelli
Affiliation:
France Telecom-CNET, BP 98, 38243 Meylan, France
Get access

Abstract

Anodic oxides of SixGe1−x (0 ≤ x ≤ 1 ) alloys have been made by plasma assisted oxidation in a microwave frequency (2.45 GHz) reactor working in the constant current bias mode. Oxide films ∼15 – 40 nm (depending upon the Ge concentration) were obtained in 10 minutes without a temperature rise of the substrate of more than 100 °C. Detailed infrared absorption studies of the oxides enabled the Si-O-Si, Ge-O-Ge and Si-O-Ge vibrational modes to be identified, the strongest being at 1056, 858 and 1000 cm−1 respectively. These modes are associated with the O asymmetric stretch, their values are at lower wavenumbers than in bulk oxides due partly to ultraviolet radiation induced structural modification and partly to thin film optic effects. A statistical model for the different bonds present in SixGe1−xO2, when used to simulate the infrared spectrum does not predict the experimentally observed form, the Ge-O-Ge peak is in general too intense in the experimental spectrum. Auger electron spectroscopy profiling of the SixGe1−x oxides suggests that there is a build-up of Ge close to the surface/oxide interface so that when combined with the infrared data, we conclude that there is a GeO2 rich region at the surface/oxide interface. The oxide is, however, globally stoichiometric. Electrical measurements (C(V) and interface state density) were begun on metal-oxide-semiconductor (MOS) capacitors for Si1−xGex. oxides over the range of concentrations 0 ≤ x ≤ 1. Only Si1−xGex oxides with x≤0.15 appear to yield satisfactory MOS capacitor curves.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] J. 1. Pankove, Optical processes in semiconductors, (1971)Google Scholar
[2] Nayak, D. K., Woo, J. C. S., Wang, K. L. and MacWilliam, K. P. Appl. Phys. Lett, 62, 2853, (1993)Google Scholar
[3] Geppert, W. and Schreiber, H.-U., Electron. Lett. 32, 2228 (1996)Google Scholar
[4] Kuznetsov, V. I., Veen, R. V., van der Drift, E., Werner, K., Verbruggen, A. H., and Radelaar, S. J. Vac. Sci. Technol. B 13, 2892 (1995)Google Scholar
[5] Pearsall, T. P., Temkim, H., Bean, J. C., and Luryi, S., IEEE Electron Dev. Lett. 7 330 (1986)Google Scholar
[6] Hosono, H., Mizuzuguchi, M., Kawazoe, H., and Nishii, J., Jpn. J. Appi. Phy. 35, L 236 (1996)Google Scholar
[7] Hellberg, P.-E, Zhang, S.-L., d'Heurle, F. M., and Petersson, C. S., J. Appl. Phys. 82, 5773 (1997)Google Scholar
[8] Liu, W. S., Chen, J. S., and Nicolet, M. A. J. Appl. Phys. 72, 4444, 1992 Google Scholar
[9] LeGoues, F. K., Rosemberg, R., Nguyen, T.N., Himpsel, F. and Meyerson, B. S., J. Appl. Phys. 65, 1724 (1989)Google Scholar
[10] Agarwal, A., Patterson, J. K., Greene, J. E. and Rockett, A. Appi. Phys. Lett. 63, 518 (1993)Google Scholar
[11] Goh, I. S., Hall, S., Eccleston, W., Zhang, J. F. and Warner, K., Electron. Lett. 30, 1988 (1998)Google Scholar
[12] Mukhopadhyay, M., Ray, S. K., Ghosh, T. B., Sreemany, M. and Maiti, C. K., Semicon. Sci. Techol. 11 360 (1996)Google Scholar
[13] Goh, I. S., Hall, S., Zhang, J. F., Hall, S., Eccleston, W. and Warner, K., Microelec. Eng. 28, 221 (1995)Google Scholar
[14] Seck, M., Devine, R.A.B., Hernandez, C., Campidelli, Y. and Dupuy, J-C, Appl. Phys. Lett. 72 2748 (1998)Google Scholar
[15] Busani, T., Plantier, H., Devine, R.A.B., Hernandez, C., Campidelli, Y., J. Non-Cryst. Solids (in press, 1999)Google Scholar
[16] Peeters, J. and Li, L., J. Appl. Phys. 72, 719 (1992)Google Scholar
[17] Martinet, C. and Devine, R.A.B. and Brunel, M., J. Appl. Phys. 81, 6996 (1997).Google Scholar
[18] Busani, T., Plantier, H.,, Devine, R.A.B., Hernandez, C., Campidelli, Y., J. Appl. Phys. (in press 1999)Google Scholar