Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T19:52:39.523Z Has data issue: false hasContentIssue false

Silicidation of Titanium-Rich Titanium Boride Deposited by Co-Sputtering on Si (100)

Published online by Cambridge University Press:  14 March 2011

G. Sade
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
J. Pelleg
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
Get access

Abstract

Titanium boride is known as a good diffusion barrier, in particular against copper, however outdiffusion of boron might deteriorate the semiconductor device. A TiSi2 sublayer prevents effectively boron penetration into the Si substrate. In this study the intention was to form a TiB2/TiSi2 bilayer film by silicidation of a titanium-rich titanium boride deposited by magnetron co-sputtering from elemental targets. The TiSi2 formation as well as the redistribution of titanium in the boride layer has been investigated by X-ray diffraction (XRD), Auger depth profiling and cross-sectional transmission electron microscopy (XTEM). Contact structure with Cu metallization was prepared to characterize this structure electrically.

The Ti-rich titanium boride film was completely amorphous by XRD up to 700 °C. Crystallization of Ti-rich silicides (Ti3Si, Ti5Si3) have started at 750 °C, but already at 800 °C crystallization of C54 TiSi2 was completed. TiB2 begins to crystallize at 800 °C. Sheet resistance measurements confirmed these results. The sheet resistance of the as-deposited film was about 16 ω/□ and no significant change was detected up to 700 °C. Then, a remarkable drop in the sheet resistance to ∼1 Ω/□ was obtained after 800 °C, and this value was actually unchanged up to 925 °C. Cross-sectional TEM revealed the formation of the C54 TiSi2 layer between TiB2 and Si and additionally, a second C54 TiSi2 layer was observed within the boride film. Current-voltage measurements of the prepared contact structure showed that it was a Schottky diode with very high leakage current.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, C.W. and Vook, R.W., Appl. Phys. Lett. 59, 175 (1991).Google Scholar
2. Wang, S.Q., Raaijmakers, I., Burrow, B.J., Suthar, S., Redkar, S., and Kim, K.-B., J.Appl.Phys., 70, 5176 (1990).Google Scholar
3. Hong, S.Q., Comrie, C.M., Russell, S.W., and Mayer, J.W., J.Appl. Phys., 70, 3655 (1992).Google Scholar
4. Cros, A., Aboelfotoh, M.O., and Tu, K.N., J.Appl. Phys. 67, 3328 (1990).Google Scholar
5. Luby, S., Majkova, E., Jergel, M., Brunel, M., Leggieri, G., Luches, A., Majni, G., and , Mengucci, Thin Solid Films, 277, 138 (1996).Google Scholar
6. Chang, K.M., Yeh, Ta-H., Deng, I-C., and Shih, C.W., J. Appl. Phys., 82 1469 (1997).Google Scholar
7. Hoener, C.F., Pylant, E., Boden, E.G., and Wang, S.-Q., J.Vac.Sci.Technol., B 12, 1394 (1994).Google Scholar
8. Imahori, J., Oku, T., Murakami, M., Thin Solid Films, 301 142 (1997).Google Scholar
9. Dew, S., Smy, T., and Brett, M., Jpn. J. Appl. Phys., 33, 1140 (1994).Google Scholar
10. Takeyama, M., Noya, A., Sase, T., and Ohta, A., J. Vac. Sci. Technol., B 14(2), 674 (1996)Google Scholar
11. Kolawa, E., Sun, X., Reid, J.S., Chen, J.S., Nicolet, M.-A., and Ruiz, R., Thin Solid Films, 236, 301 (1993).Google Scholar
12. Shimooka, Y., Iijima, T., Nakamura, S., and Suguro, K., Jpn. J. Appl. Phys., 36 1589 (1997).Google Scholar
13. Wang, Shi-Qing, MRS Bulletin, 19(8), 30 (1994).Google Scholar
14. Holleck, H., Material selection for hard coatings, J. Vac. Sci. Technol., A4(6) 2661 (1986).Google Scholar
15. Samsonov, G. V. and Vinitskii, L. M., Handbook of refractory compounds (Plenum Press, New York, 1979).Google Scholar
16. Nelson, C.W., 1969 Hybrid Microelectronics Symposium (International Society for Hybrid Microelectronics, Hicks Printing Co., Dallas, TX 1969).Google Scholar
17. Nicolet, M.-A., Thin Solid Films, 52, 415 (1978).Google Scholar
18. Blom, H.-O., Larsson, T., Berg, S., and Ostling, M., J. Vac. Sci. Technol., A7,162 (1989).Google Scholar
19. Shappirio, J. R., Finnegan, J. J., and Lux, R. A., J. Vac. Sci. Technol., B4, 1409 (1986).Google Scholar
20. Choi, C. S., Ruggles, G. A., Shah, A. S., Xing, G. C., Osburn, C. M., and Hunn, J. D., J. Electrochem. Soc., 138, 3062 (1991).Google Scholar
21. Choi, S., Wang, Q., Osburn, C. M., Ruggles, G. A., and Shah, A. S., IEEE Transactions on electron devices, 39, 2341 (1992).Google Scholar
22. Sade, G., Pelleg, J., Mater. Res. Soc. Symp. Proc. 402, edited by Tung, R. T., Maex, K., Pellegrini, P. W., and Allen, L. H. (M.. R.. S. Symp. Proc. 402, Pittsburgh, PA 1996) 131.Google Scholar
23. Sade, G., Pelleg, J. and Ezersky, V., Microelectronic Engineering, 33, 317 (1996).Google Scholar
24. Gas, P., Deline, V., d'Heurle, F.M., Michel, A., and Scilla, G., J. Appl. Phys., 60, 1634 (1986).Google Scholar
25. Sade, G., Pelleg, J., Microelectronic Engineering, 37/38, 535 (1997).Google Scholar
26. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981) p. 245311.Google Scholar
27. Murarka, S. P., Silicides for VLSI Application, (Academic Press, New York, 1983)p.15 Google Scholar