Skip to main content
×
×
Home

Silicon Layer Stacking Enabled by Wafer Bonding

  • Chuan Seng Tan (a1), Kuan-Neng Chen (a2), Andy Fan (a3), Anantha Chandrakasan (a4) and Rafael Reif (a5)...
Abstract

Three-dimensional integrated circuits (3-D ICs), in the form of a vertical stack of several interconnected device layers, have many performance, form factor, and integration advantages. The main objective of this work is to develop reliable process technology to enable the fabrication of a vertically interconnected silicon multi-layer stack.

Low temperature wafer bonding processes, both copper thermo-compression bonding and silicon dioxide fusion bonding, are studied extensively as key enabling technology. Cu thermo-compression bonding is studied for its feasibility as a permanent bond between active layers in a multi-layer stack. Silicon dioxide wafer bonding, on the other hand, is used as a temporary bond to attach a donor wafer to a handle wafer during donor wafer thinning and subsequent layer transfer. Sufficiently high bond strength is obtained with careful surface preparation and activation prior to bonding.

Silicon layer can be stacked either in a “face down” or “face up” orientation. Using a combination of wafer bonding and thinning, double-layer stacks in both orientations are fabricated. By repeating these steps on two “face down” double-layer stacks, a four-layer stack is successful demonstrated.

Copyright
References
Hide All
1. Sylvester, D. and Hu, C., Proc. IEEE 8(5), 634 (2001).
2. Kapur, P., McVittie, J.P., and Saraswat, K.C., Proc. IEEE Interconnect Technology Conference, 233 (2001).
3. International Technology Roadmap for Semiconductors (2001).
4. Su, D.K., Loinaz, M.J., Masui, S., and Wooley, B.A., IEEE J. Solid State Circuits 28(4), 420 (1993).
5. Tan, C. S., Chen, K. N., Fan, A., and Reif, R., Electrochem. Solid State Lett. 8, G1 (2005).
6. Holloway, K. and Fryer, P. M., Appl. Phys. Lett., 57, 736 (1990).
7. Chen, K. N., Tan, C. S., Fan, A., and Reif, R., Electrochem. Solid State Lett. 7, G14 (2004).
8. Chen, P. H., Peng, H. Y., Hsieh, C. M., and Chyu, M. K., Sens. Actuators A 93, 132 (2001).
9. van der Groen, S., Rosmeulen, M., Jansen, P., Baert, K., and Deferm, L., Int. Conf. Solid State Sensors and Actuators, 629 (1997).
10. Hayashi, Y., Wada, S., Kajiyana, K., Oyama, K., Koh, R., Takahashi, S., and Kunio, T., Symp. VLSI Technology, Tech. Dig., 95 (1990).
11. Tan, C. S., Fan, A., Chen, K. N., and Reif, R., Appl. Phys. Lett. 82(16), 2649 (2003).
12. Tan, C. S., Chen, K. N., Fan, A., and Reif, R., Electrochem. Solid State Lett. 8(1), G1 (2005).
13. Maszara, W.P., Goetz, G., Caviglia, A., and McKitterick, J.B., J. Appl. Phys. 64(10), 4943 (1988).
14. Tan, C. S., Reif, R., Theodore, D., and Pozder, S., Appl. Phys. Lett. 87(20), 201909 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 259 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th August 2018. This data will be updated every 24 hours.