Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T11:41:20.059Z Has data issue: false hasContentIssue false

Similarities between the Coordination of Actinide Ions in Solution and the Structures of their Related Crystalline Phases

Published online by Cambridge University Press:  26 February 2011

L. Soderholm
Affiliation:
ls@anl.gov, Argonne National Laboratory, Chemistry Division, Bldg 200, Argonne, IL, 60439, United States
S. Skanthakumar
Affiliation:
skantha@anl.gov
Peter C Burns
Affiliation:
Burns@nd.edu
Tori Forbes
Affiliation:
tziemann@nd.edu
Get access

Abstract

High-energy x-ray scattering (HEXS) is used to probe correlations about selected actinide ions in solution. The experiments were designed to favor homoleptic water coordination in order to compare the preferred structural environment of UO22+, NpO2+, and Cm3+ with similar ligands. In addition to comparisons between the three actinide ions in solution, the results from the HEXS studies are also compared with known solid state structures. Marked similarities are found between near- and next-near neighbor coordination in solution and in the solid state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burns, P.C., Miller, M.L., and Ewing, R.C., Canadian Mineralogist. 34, 845 (1996)Google Scholar
2. Burns, P.C., Ewing, R.C., and Hawthorne, F.C., Canadian Mineralogist. 35, 1551 (1997)Google Scholar
3. Katz, J.J., Seaborg, G.T., and Morss, L.R., eds. The Chemistry of the Actinide Elements. Second ed. 1986, Chapman and Hall: London. 1674.Google Scholar
4. Sullens, T.A., Jensen, R.A., Shvareva, T.Y., and Albrecht-Schmitt, T.E., J. Amer. Chem. Soc. 126, 2676 (2004)Google Scholar
5. Forbes, T.Z., Burns, P.C., Soderholm, L., and Skanthakumar, S., Chem. Mater., (in the press)Google Scholar
6. Burns, P.C., Canadian Mineralogist, (in the press)Google Scholar
7. Krot, N.N. and Grigoriev, M.S., Russ. Chem. Rev. 73, 89 (2004)10.1070/RC2004v073n01ABEH000852Google Scholar
8. Morss, L.R., Richardson, J.W., Williams, C.W., Lander, G.H., Lawson, A.C., Edelstein, N.M., and Shalimoff, G.V., J. Less-Common Met. 156, 273 (1989)10.1016/0022-5088(89)90425-6Google Scholar
9. Soderholm, L., Skanthakumar, S., and Williams, C.W., Phys. Rev. B. 60, 4302 (1999-II)Google Scholar
10. Matonic, J.H., Scott, B.L., and Neu, M.P., Inorg. Chem. 40, 2638 (2001)Google Scholar
11. Albrecht-Schmitt, T.E., (private communication)Google Scholar
12. Teo, B.K., EXAFS: Basic Principles and Data Analysis. 1986, Berlin: Springer-Verlag. 349.Google Scholar
13. Antonio, M.R. and Soderholm, L., X-ray absorption spectroscopy of the actinides, in Chemistry of the Actinide and Transactinide Elements, Katz, J.J., Morss, L.R., Fuger, J., and Edelstein, N., Editors. in press, Kluwer.Google Scholar
14. Aberg, M., Ferri, D., Glaser, J., and Grenthe, I., Inorg. Chem. 22, 3986 (1983)Google Scholar
15. Aberg, M., Ferri, D., Glaser, J., and Grenthe, I., Inorg. Chem. 22, 3981 (1983)Google Scholar
16. Neuefeind, J., Skanthakumar, S., and Soderholm, L., Inorg. Chem. 43, 2422 (2004)Google Scholar
17. Neuefeind, J., Benmore, C.J., Tomberli, B., and Egelstaff, P.A., J. Phys.: Condens. Matter. 14, L429 (2002)Google Scholar
18. Soderholm, L., Skanthakumar, S., and Neuefeind, J., Anal. Bioanal. Chem. 383, 48 (2005)Google Scholar
19. Skanthakumar, S., Antonio, M.R., and Soderholm, L., Inorg. Chem., (submitted)Google Scholar
20. Rutt, U., Beno, M.A., Strempfer, J., Jennings, G., Kurtz, C., and Montano, P.A., Nucl. Instrum. Meth. A. 467, 1026 (2001)Google Scholar
21. Waseda, Y., The structure of non-crystalline materials. 1980, New York: McGraw-Hill Inc. 326.Google Scholar
22. Neuefeind, J., Soderholm, L., and Skanthakumar, S., J. Phys. Chem. A. 108, 2733 (2004)Google Scholar
23. Fischer, A., Z. Anorg. Allg. Chem. 629, 1012 (2003)Google Scholar
24. Antonio, M.R., Soderholm, L., Williams, C.W., Blaudeau, J.-P., and Bursten, B.E., Radiochim. Acta. 89, 17 (2001)Google Scholar
25. Sullivan, J.C., Hindman, J.C., and Zielen, A.J., J. Amer. Chem. Soc. 83, 3373 (1961)Google Scholar
26. Guillaume, B., Begun, G.M., and Hahn, R.L., Inorg. Chem. 21, 1159 (1982)Google Scholar
27. Grigor'ev, M.S. Baturin, N.A., Bessonov, A.A., and Krot, N.N., Radiochemistry. 37, 12 (1995)Google Scholar
28. Forbes, T.Z., (unpublished)Google Scholar
29. Albrecht-Schmitt, T.E. Almond, P.M., and Sykora, R.E., Inorg. Chem. 42, 3788 (2003)Google Scholar
30. Skanthakumar, S. and Soderholm, L., Mater. Res. Soc. Proc., (submitted)Google Scholar
31. Yang, T. and Bursten, B.E., Inorg. Chem., (in the press)Google Scholar
32. äslund, J., Lindqvist-Reis, P., Persson, I., and Sandström, M., Inorg. Chem. 39, 4006 (2000)Google Scholar
33. Harrowfield, J.M., Kepert, D.L., Patrick, J.M., and White, A.H., Aust. J. Chem. 36, 483 (1983)Google Scholar
34. Chatterjee, A., Maslen, E.N., and Watson, K.J., Acta Cryst. B. 44, 381 (1988)Google Scholar